KISS

From Wikiwasnonet
Revision as of 19:34, 29 March 2013 by Fossy (talk | contribs)
Jump to navigation Jump to search

KISS - Keep It Stupid Simple

Alles, das komplizierter ist, als es sein müsste, ist unnötig - beschreibt das KISS Pinzip.

Wenn etwas einfacher geht, so ist es besser. Wenn es nicht mehr einfacher geht, so ist ein Optimum erreicht.

Es gibt viele Dinge, die dem KISS Prinzip entsprechen. UNIX z.B. gehört dazu und hat (glaube ich) auch dieses Prinzip als erstes so beschrieben.

Ich will aber hier über das KISS Prinzip in einem anderen Kontext schreiben - den dezimalen Gleitkommazahlen: Meinen Lieblings-Taschen-Rechnern (HP) kommen mit 10 Stellen Mantisse und zwei Stellen Exponent aus. Die "wirkliche" Welt kommt mit "solchen" Zahlen aus - fast aus.

Inspiriert wurde ich durch einen Gedanken von der Doppel-CD "Lesch und Gunkel" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} (der Link ist bloß dazu da, dass man weiß "wovon" ich hier spreche).

Dabei geht es im wesentlichen darum: "Wie viele Stellen braucht unser Universum von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} ?". Gunkel meint dabei, dass unser Universum ca. 250 Stellen von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} braucht - die "Mathematiker" somit mit dem aktuellen Rekord von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{12}} Stellen weit, weit über das Notwendige hinaus geschossen sind.

Ich hingegen, bin der Meinung, dass unser Universum "bloß" 128 Stellen von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} bnötigt, weil...

  • Die größte "praktische" Länge ist der Umfang des Universums - der Umfang des Universums ist das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} -fache des Durchmessers des Universums - der Durchmesser des Universums ist (siehe und) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 28\cdot10^{27}} m.
  • Die kleinste "praktische" Länge ist die Plank-Länge - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.6\cdot 10^{-35}} m.

Der Gedanke ist, das größte denkbare n-Eck zu finden, dieses wird von dem größten denkbaren Kreis umschrieben. Das ist der Kreis, der das ganze Universum umspannt. Die Seiten des n-Ecks sind die kleinsten denkbare Längen. Somit ergibt sich ein: größter möglicher Umfang dividiert durch kleinste mögliche Länge: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 28\cdot10^{27} \cdot \pi \div 1.6\cdot 10^{-35} \cong 5.5\cdot 10^{63}} d.h. das größte denkbare n-Eck hat ca. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5.5\cdot 10^{63}} Ecken.

Wenn wir nun ein solches "Maximal-Eck" mit einem idealen Kreis vergleichen, dann kommen wir - so der Gedanke - auf die maximal notwendige Anzahl der Stellen von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} .

Für die folgende Abschätzung der "notwendigen" Stellen von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} nehme ich ein Kreis mit dem "Einheitsdurchmesser"; das ist ein Keis mit dem Durchmesser 1 - 1 Meter - 1 Uniniversum - das ist egal, denn wir befinden uns ab jetzt im Reich der Mathematik - da ist alles "logische" denkbar...

Die folgenden Formeln verwenden durchaus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} - es wird sich aber schrittweise "herauskürzen" - wir brauchen uns nur "vorstellen" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} "exakt" zu kennen. In so einem Fall steht eben Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} dort.

Im folgenden Kontext betrachten wir ein regelmäßiges n-Eck, das einem Einheitskreis eingeschrieben ist. (Alles folgende gilt für alle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n >= 2} - allerdings strapaziert der Grenzfall 2 die Vorstellungskraft ein wenig...)