Fossys Lösung für das Rätsel MR_02.
( 0 ! + 0 ! + 0 ! ) ! = 6 {\displaystyle (0!+0!+0!)!=6}
( 1 + 1 + 1 ) ! = 6 {\displaystyle (1+1+1)!=6}
2 + 2 + 2 = 6 {\displaystyle 2+2+2=6}
2 ⋅ 2 + 2 = 6 {\displaystyle 2\cdot 2+2=6}
2 2 + 2 = 6 {\displaystyle 2^{2}+2=6}
( 2 + 2 2 ) ! = 6 {\displaystyle \left(2+{2 \over 2}\right)!=6}
( 2 ⋅ 2 2 ) = 6 {\displaystyle {\binom {2\cdot 2}{2}}=6}
3 ⋅ 3 − 3 = 6 {\displaystyle 3\cdot 3-3=6}
3 ! 3 3 = 6 {\displaystyle 3!{3 \over 3}=6}
( 3 3 3 ) ! = 6 {\displaystyle \left({\sqrt[{3}]{3^{3}}}\right)!=6}
∫ − 3 3 3 d x = 6 {\displaystyle \int _{-{\sqrt {3}}}^{\sqrt {3}}{\sqrt {3}}\,dx=6}
cot ( arctan ( ∫ 3 ∞ 3 x − 3 d x ) ) = 6 {\displaystyle \cot(\arctan(\int _{3}^{\infty }3~x^{-3}\,dx))=6}
tan π 3 ⋅ tan π 3 cos π 3 = 6 {\displaystyle {{\tan {\pi \over 3}\cdot \tan {\pi \over 3}} \over {\cos {\pi \over 3}}}=6}
∑ i = 3 3 3 i = 6 {\displaystyle \sum _{i={3 \over 3}}^{3}i=6}
∑ i = sin 3 π 3 i 3 = 6 {\displaystyle {\sqrt {\sum _{i=\sin 3\pi }^{3}i^{3}}}=6}
∑ i = − cos 3 π 3 i 3 = 6 {\displaystyle {\sqrt {\sum _{i=-\cos 3\pi }^{3}i^{3}}}=6}
4 + 4 + 4 = 6 {\displaystyle {\sqrt {4}}+{\sqrt {4}}+{\sqrt {4}}=6}
4 ! 4 ⋅ 4 = 6 {\displaystyle {{4!} \over {\sqrt {4\cdot 4}}}=6}
5 + 5 5 = 6 {\displaystyle 5+{5 \over 5}=6}
6 6 6 = 6 {\displaystyle 6{6 \over 6}=6}
6 6 6 = 6 {\displaystyle {\sqrt[{6}]{6^{6}}}=6}
cot π 6 ⋅ cot π 6 sin π 6 = 6 {\displaystyle {{\cot {\pi \over 6}\cdot \cot {\pi \over 6}} \over {\sin {\pi \over 6}}}=6}
7 − 7 7 = 6 {\displaystyle 7-{7 \over 7}=6}
( 8 + 8 8 ) ! = 6 {\displaystyle \left({\sqrt {8+{8 \over 8}}}\right)!=6}
( 9 ) ! 9 9 = 6 {\displaystyle \left({\sqrt {9}}\right)!{9 \over 9}=6}
9 ⋅ 9 − 9 = 6 {\displaystyle {\sqrt {9\cdot 9}}-{\sqrt {9}}=6}
( log 10 + log 10 + log 10 ) ! = 6 {\displaystyle (\log 10+\log 10+\log 10)!=6}
⌊ 11 ⋅ 11 11 ⌋ = 6 {\displaystyle \left\lfloor {\sqrt {\sqrt {\sqrt {\sqrt {11\cdot 11^{11}}}}}}\right\rfloor =6}
35 + 35 35 = 6 {\displaystyle {\sqrt {35+{35 \over 35}}}=6}
36 36 36 = 6 {\displaystyle {\sqrt {36{36 \over 36}}}=6}
37 − 37 37 = 6 {\displaystyle {\sqrt {37-{37 \over 37}}}=6}
log ( 100 ⋅ 100 ⋅ 100 ) = 6 {\displaystyle \log(100\cdot 100\cdot 100)=6}
Für den Rest aller ganzen Zahlen
| cos n π + cos n π + cos n π | ! = 6 ∀ n ∈ Z {\displaystyle \left|\cos n\pi +\cos n\pi +\cos n\pi \right|!=6~\forall ~n\in \mathbb {Z} }
( n ( n − n ) − e i π − e i π − e i π ) ! = 6 ∀ n ∈ C {\displaystyle (n(n-n)-e^{i\pi }-e^{i\pi }-e^{i\pi })!=6~\forall ~n\in \mathbb {C} }
| e n i π + e n i π + e n i π | ! = 6 ∀ n ∈ Z {\displaystyle \left|e^{ni\pi }+e^{ni\pi }+e^{ni\pi }\right|!=6~\forall ~n\in \mathbb {Z} }