Difference between revisions of "MR 02 Loesung"

From Wikiwasnonet
Jump to navigation Jump to search
m (Link zum Rätsel eingefügt.)
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
Fossys Lösung für das Rätsel [[MR_02]].
 +
 
== Drei Zahlen ==
 
== Drei Zahlen ==
  
Line 11: Line 13:
 
<math>2^2 + 2 = 6</math>
 
<math>2^2 + 2 = 6</math>
  
<math>(2 + {2 \over 2})! = 6</math>
+
<math>\left (2 + {2 \over 2} \right )! = 6</math>
  
 
<math> \binom{2 \cdot 2}{2} = 6 </math>
 
<math> \binom{2 \cdot 2}{2} = 6 </math>
Line 19: Line 21:
 
<math>3! {3 \over 3} = 6</math>
 
<math>3! {3 \over 3} = 6</math>
  
<math>(\sqrt[3]{3^3})! = 6</math>
+
<math>\left (\sqrt[3]{3^3} \right )! = 6</math>
  
 
<math>\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \, dx = 6</math>
 
<math>\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \, dx = 6</math>
Line 28: Line 30:
  
 
<math>\sum_{i={3 \over 3}}^3 i = 6</math>
 
<math>\sum_{i={3 \over 3}}^3 i = 6</math>
 +
 +
<math>\sqrt{\sum_{i=\sin 3\pi}^3 i^3} = 6 </math>
 +
 +
<math>\sqrt{\sum_{i=-\cos 3\pi}^3 i^3} = 6 </math>
  
 
<math>\sqrt{4} + \sqrt{4} + \sqrt{4} = 6</math>
 
<math>\sqrt{4} + \sqrt{4} + \sqrt{4} = 6</math>
Line 43: Line 49:
 
<math>7 - {7 \over 7} = 6</math>
 
<math>7 - {7 \over 7} = 6</math>
  
<math>(\sqrt{8 + {8 \over 8}})! = 6</math>
+
<math>\left (\sqrt{8 + {8 \over 8}} \right )! = 6</math>
  
<math>(\sqrt{9})! {9 \over 9} = 6</math>
+
<math>\left (\sqrt{9} \right )! {9 \over 9} = 6</math>
 +
 
 +
<math>\sqrt{9\cdot 9} - \sqrt{9} = 6</math>
  
 
<math>(\log 10 + \log 10 + \log 10)! = 6</math>
 
<math>(\log 10 + \log 10 + \log 10)! = 6</math>
 +
 +
<math>\left \lfloor \sqrt{\sqrt{\sqrt{\sqrt{11\cdot 11^{11}}}}} \right \rfloor = 6</math>
 +
 +
<math>\sqrt{35 + {35 \over 35}} = 6</math>
 +
 +
<math>\sqrt{36 {36 \over 36}} = 6</math>
 +
 +
<math>\sqrt{37 - {37 \over 37}} = 6</math>
 +
 +
<math>\log( 100\cdot 100\cdot 100) = 6</math>
  
 
Für den Rest aller ganzen Zahlen
 
Für den Rest aller ganzen Zahlen

Latest revision as of 15:07, 14 May 2021

Fossys Lösung für das Rätsel MR_02.

Drei Zahlen

Für den Rest aller ganzen Zahlen