Difference between revisions of "NMMRUS 63 Loesung"
(New page: == Wie weit ist es bis Piketown? == zurück zur Aufgabenstellung Sei s die gesamte Strecke vom Hotel bis Piketown, a die Strecke vom Hotel bis zur Station und b die Strecke...) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
Von der 3.Möglichkeit wissen wir, dass der Fußgänger 4 Meilen zurückgelegt hat, wenn die Kutsche in der Station eintrifft. | Von der 3.Möglichkeit wissen wir, dass der Fußgänger 4 Meilen zurückgelegt hat, wenn die Kutsche in der Station eintrifft. | ||
− | 1 | + | <small>[1]</small> <math>{a \over v_k} = {4 \over v_f}</math> |
Daraus lassen sich unmittelbar zwei Beziehungen ableiten (wir werden sie später noch brauchen). | Daraus lassen sich unmittelbar zwei Beziehungen ableiten (wir werden sie später noch brauchen). | ||
− | 2 | + | <small>[2]</small> <math>{v_f \over v_k} = {4 \over a}</math> <br/> |
− | 3 | + | <small>[3]</small> <math>v_k = v_f {a \over 4}</math> |
Weiters wissen von der 4. Möglichkeit, dass der Fußgänger genau dann in der Station eintrifft, wenn die Pause von 30 Minuten vorbei ist. | Weiters wissen von der 4. Möglichkeit, dass der Fußgänger genau dann in der Station eintrifft, wenn die Pause von 30 Minuten vorbei ist. | ||
− | 4 | + | <small>[4]</small> <math>{{a - 4} \over v_f} = 30</math> <br/> |
− | 5 | + | <small>[5]</small> <math>v_f = {{a - 4} \over 30}</math> |
− | Aus 3 | + | Aus [3] und [5] ergibt sich. |
− | 6 | + | <small>[6]</small> <math>v_k = {{(a - 4)} \over 30} \cdot {a \over 4}</math> |
Von Möglichkeit 2 wissen wir, dass die Kutsche den Fußgänger um 1 Meile schlägt. Die Kutsche gibt dem Fußgänger 30 Minuten mehr Zeit, da sie selber solange in der Station verweilt. | Von Möglichkeit 2 wissen wir, dass die Kutsche den Fußgänger um 1 Meile schlägt. Die Kutsche gibt dem Fußgänger 30 Minuten mehr Zeit, da sie selber solange in der Station verweilt. | ||
− | 7 | + | <small>[7]</small> <math>t_2 = {s \over v_k} + 30</math> <br/><br/> |
− | 8 | + | <small>[8]</small> <math>v_f \cdot t_2 = s - 1</math> <br/><br/> |
− | 9 | + | <small>[9]</small> <math>s - 1 = {v_f \over v_k} \cdot s + 30 \cdot v_f</math> |
Zusammenfassen durch Herausheben von s. | Zusammenfassen durch Herausheben von s. | ||
− | 10 | + | <small>[10]</small> <math>s \cdot (1 - {v_f \over v_k}) = 30 \cdot v_f + 1</math> <br/><br/> |
+ | <small>[11]</small> <math>s = {{30 \cdot v_f + 1} \over {1 - {v_f \over v_k}}}</math> | ||
+ | |||
+ | Jetzt setzen wir das was wir über die Geschwindikeiten bzw. deren Verhältnis wissen aus [5] und [2] ein. | ||
+ | |||
+ | <small>[12]</small> <math>s = {{30 \cdot {{a - 4} \over 30} + 1} \over {1 - {4 \over a}}}</math> <br/><br/> | ||
+ | <small>[13]</small> <math>s = {{(a - 4) + 1} \over {{a - 4} \over a}}</math> <br/><br/> | ||
+ | <small>[14]</small> <math>s = a \cdot {{a - 3} \over {a - 4}}</math> | ||
+ | |||
+ | Von der Möglichkeit 4 wissen wir, dass in diesem Fall der Fußgänger die Kutsche um 15 Minuten schlägt. <math>t_4</math> ist die Zeit die der Fußgänger für die zweite Teilstrecke b braucht. Die Kutsche hat einerseits 30 Minuten weniger zur Verfügung (wegen der Pause) und braucht dann immer noch 15 Minuten länger. | ||
+ | |||
+ | <small>[15]</small> <math>t_4 = {b \over v_f}</math><br/> | ||
+ | <small>[16]</small> <math>{b \over v_k} = t_4 - 30 + 15</math><br/><br/> | ||
+ | <small>[17]</small> <math>{b \over v_k} = {b \over v_f} - 15</math><br/><br/> | ||
+ | <small>[18]</small> <math>b \cdot ({1 \over v_f} - {1 \over v_k}) = 15</math><br/><br/> | ||
+ | <small>[19]</small> <math>b \cdot {{v_k - v_f} \over {v_f \cdot v_k}} = 15</math><br/><br/> | ||
+ | <small>[20]</small> <math>b = 15 \cdot {{v_k - v_f} \over {v_f \cdot v_k}}</math> | ||
+ | |||
+ | Einsetzen aus [5] und [6] | ||
+ | |||
+ | <small>[21]</small> | ||
+ | <math> b = | ||
+ | 15 | ||
+ | \cdot | ||
+ | { { ( { {a - 4} \over 30 } )^2 | ||
+ | \cdot | ||
+ | {a \over 4} | ||
+ | } | ||
+ | \over | ||
+ | { ( { {a - 4} \over 30 } ) | ||
+ | \cdot | ||
+ | {a \over 4} | ||
+ | - | ||
+ | { {a - 4} \over 30 } | ||
+ | } | ||
+ | } | ||
+ | </math> | ||
+ | |||
+ | Da kann man durch <math>{a - 4} \over 30</math> kürzen. | ||
+ | |||
+ | <small>[22]</small> | ||
+ | <math>b = | ||
+ | 15 | ||
+ | \cdot | ||
+ | { { ( { {a - 4} \over 30 } ) | ||
+ | \cdot | ||
+ | {a \over 4} | ||
+ | } | ||
+ | \over | ||
+ | { { a \over 4 } | ||
+ | - | ||
+ | 1 | ||
+ | } | ||
+ | } | ||
+ | </math><br/><br/> | ||
+ | |||
+ | <small>[23]</small> | ||
+ | <math>b = | ||
+ | { { | ||
+ | {15 \cdot (a - 4) \cdot a} | ||
+ | \over | ||
+ | {30 \cdot 4} | ||
+ | } | ||
+ | \over | ||
+ | { | ||
+ | {a - 4} | ||
+ | \over | ||
+ | 4 | ||
+ | } | ||
+ | } | ||
+ | </math> | ||
+ | |||
+ | Doppelbrüche auflösen. | ||
+ | |||
+ | <small>[24]</small> | ||
+ | <math>b = | ||
+ | { | ||
+ | { 15 \cdot (a - 4) \cdot a \cdot 4 } | ||
+ | \over | ||
+ | { 30 \cdot 4 \cdot (a - 4) } | ||
+ | } | ||
+ | </math> | ||
+ | |||
+ | Was geht kürzen. | ||
+ | |||
+ | <small>[25]</small> | ||
+ | <math>b = | ||
+ | { | ||
+ | { 15 \cdot a } | ||
+ | \over | ||
+ | { 30 } | ||
+ | } | ||
+ | </math><br/><br/> | ||
+ | |||
+ | <small>[26]</small> | ||
+ | <math>b = { a \over 2 }</math> | ||
+ | |||
+ | Bis jetzt wurde es noch nicht erwähnt aber a + b = s . Da setzen wir jetzt [14] und [26] ein. | ||
+ | |||
+ | <small>[27]</small> <math>a + {a \over 2} = a \cdot {{a - 3} \over {a - 4}}</math> | ||
+ | |||
+ | Mal 2, mal (a - 4) | ||
+ | |||
+ | <small>[28]</small> <math>2 \cdot a \cdot (a - 4) + a \cdot (a - 4) = 2 \cdot a \cdot (a - 3)</math> | ||
+ | |||
+ | Duch a kürzen. | ||
+ | |||
+ | <small>[29]</small> <math>2 \cdot (a - 4) + (a - 4) = 2 \cdot (a - 3)</math><br/> | ||
+ | <small>[30]</small> <math>2 a - 8 + a - 4 = 2 a - 6</math><br/> | ||
+ | <small>[31]</small> <math>a = 8 + 4 - 6 = 6</math> | ||
+ | |||
+ | Jetzt is' leicht. | ||
+ | |||
+ | <small>[32]</small> <math>a = 6</math><br/> | ||
+ | <small>[33]</small> <math>b = {a \over 2} = 3</math><br/> | ||
+ | <small>[34]</small> <math>s = a + b = 6 + 3 = 9</math> | ||
+ | |||
+ | Piketown ist 9 Meilen vom Hotel entfernt. |
Latest revision as of 19:30, 29 October 2007
Wie weit ist es bis Piketown?
Sei s die gesamte Strecke vom Hotel bis Piketown, a die Strecke vom Hotel bis zur Station und b die Strecke von der Station bis Piketown. Alle Strecken werden in Meilen gemessen. Sei Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_f} und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_k} die Geschwindikeit des Fußgängers bzw. der Kutsche gemessen in Meilen pro Minute (da die Zeitangaben auch in Minuten sind).
Von der 3.Möglichkeit wissen wir, dass der Fußgänger 4 Meilen zurückgelegt hat, wenn die Kutsche in der Station eintrifft.
[1] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a \over v_k} = {4 \over v_f}}
Daraus lassen sich unmittelbar zwei Beziehungen ableiten (wir werden sie später noch brauchen).
[2] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_f \over v_k} = {4 \over a}}
[3] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_k = v_f {a \over 4}}
Weiters wissen von der 4. Möglichkeit, dass der Fußgänger genau dann in der Station eintrifft, wenn die Pause von 30 Minuten vorbei ist.
[4] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{a - 4} \over v_f} = 30}
[5] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_f = {{a - 4} \over 30}}
Aus [3] und [5] ergibt sich.
[6] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_k = {{(a - 4)} \over 30} \cdot {a \over 4}}
Von Möglichkeit 2 wissen wir, dass die Kutsche den Fußgänger um 1 Meile schlägt. Die Kutsche gibt dem Fußgänger 30 Minuten mehr Zeit, da sie selber solange in der Station verweilt.
[7] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = {s \over v_k} + 30}
[8] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_f \cdot t_2 = s - 1}
[9] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s - 1 = {v_f \over v_k} \cdot s + 30 \cdot v_f}
Zusammenfassen durch Herausheben von s.
[10] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \cdot (1 - {v_f \over v_k}) = 30 \cdot v_f + 1}
[11] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = {{30 \cdot v_f + 1} \over {1 - {v_f \over v_k}}}}
Jetzt setzen wir das was wir über die Geschwindikeiten bzw. deren Verhältnis wissen aus [5] und [2] ein.
[12] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = {{30 \cdot {{a - 4} \over 30} + 1} \over {1 - {4 \over a}}}}
[13] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = {{(a - 4) + 1} \over {{a - 4} \over a}}}
[14] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = a \cdot {{a - 3} \over {a - 4}}}
Von der Möglichkeit 4 wissen wir, dass in diesem Fall der Fußgänger die Kutsche um 15 Minuten schlägt. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_4} ist die Zeit die der Fußgänger für die zweite Teilstrecke b braucht. Die Kutsche hat einerseits 30 Minuten weniger zur Verfügung (wegen der Pause) und braucht dann immer noch 15 Minuten länger.
[15] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_4 = {b \over v_f}}
[16] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {b \over v_k} = t_4 - 30 + 15}
[17] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {b \over v_k} = {b \over v_f} - 15}
[18] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \cdot ({1 \over v_f} - {1 \over v_k}) = 15}
[19] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \cdot {{v_k - v_f} \over {v_f \cdot v_k}} = 15}
[20] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 15 \cdot {{v_k - v_f} \over {v_f \cdot v_k}}}
Einsetzen aus [5] und [6]
[21] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 15 \cdot { { ( { {a - 4} \over 30 } )^2 \cdot {a \over 4} } \over { ( { {a - 4} \over 30 } ) \cdot {a \over 4} - { {a - 4} \over 30 } } } }
Da kann man durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a - 4} \over 30} kürzen.
[22]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 15 \cdot { { ( { {a - 4} \over 30 } ) \cdot {a \over 4} } \over { { a \over 4 } - 1 } } }
[23] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = { { {15 \cdot (a - 4) \cdot a} \over {30 \cdot 4} } \over { {a - 4} \over 4 } } }
Doppelbrüche auflösen.
[24] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = { { 15 \cdot (a - 4) \cdot a \cdot 4 } \over { 30 \cdot 4 \cdot (a - 4) } } }
Was geht kürzen.
[25]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = { { 15 \cdot a } \over { 30 } } }
[26] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = { a \over 2 }}
Bis jetzt wurde es noch nicht erwähnt aber a + b = s . Da setzen wir jetzt [14] und [26] ein.
[27] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + {a \over 2} = a \cdot {{a - 3} \over {a - 4}}}
Mal 2, mal (a - 4)
[28] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot a \cdot (a - 4) + a \cdot (a - 4) = 2 \cdot a \cdot (a - 3)}
Duch a kürzen.
[29] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot (a - 4) + (a - 4) = 2 \cdot (a - 3)}
[30] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a - 8 + a - 4 = 2 a - 6}
[31] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 8 + 4 - 6 = 6}
Jetzt is' leicht.
[32] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 6}
[33] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = {a \over 2} = 3}
[34] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = a + b = 6 + 3 = 9}
Piketown ist 9 Meilen vom Hotel entfernt.