Difference between revisions of "MR 03 Lösung rlk"

From Wikiwasnonet
Jump to navigation Jump to search
(Link to problem statement.)
m
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Diese Lösung für [[MR_03]] ist noch nicht vollständig, ich habe noch nicht alles eingetippt, was ich mir überlegt habe und ich denke weiter nach...
 
Diese Lösung für [[MR_03]] ist noch nicht vollständig, ich habe noch nicht alles eingetippt, was ich mir überlegt habe und ich denke weiter nach...
  
=Die folgenden 14 Ausdrücke haben den Wert 50=
+
=Die folgenden 17 Ausdrücke haben den Wert 50=
==Verschiedenes (5)==
+
==Verschiedenes (6)==
 
<math>2\cdot 5^2</math><br>
 
<math>2\cdot 5^2</math><br>
 
<math>7^2+1</math><br>
 
<math>7^2+1</math><br>
Line 9: Line 9:
 
<math>\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left(\left(\left(1+1+1\right)!\right)!\right)!}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor
 
<math>\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left\lfloor\sqrt{\left(\left(\left(1+1+1\right)!\right)!\right)!}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor}\right\rfloor
 
</math>  [[http://home.pipeline.com/~hbaker1/hakmem/number.html#item34| HAKMEM #34]] <br>
 
</math>  [[http://home.pipeline.com/~hbaker1/hakmem/number.html#item34| HAKMEM #34]] <br>
 +
<math>\left\lfloor\frac{\phi^{10}-\phi^{5}}{\sqrt{5}}\right\rfloor</math> mit dem Verhältnis <math>\phi=\frac{1+\sqrt{5}}{2}</math> des goldenen Schnitts<br>
  
 
==Grenzwerte (3)==
 
==Grenzwerte (3)==
Line 15: Line 16:
 
<math>\lim_{x\to 0}100\cdot\frac{\tan(x)-\sin(x)}{x^3}</math><br>
 
<math>\lim_{x\to 0}100\cdot\frac{\tan(x)-\sin(x)}{x^3}</math><br>
  
==Summen (4)==
+
==Summen (5)==
 
<math>\sum_{n=0}^\infty\left(\frac{49}{50}\right)^n</math><br>
 
<math>\sum_{n=0}^\infty\left(\frac{49}{50}\right)^n</math><br>
 
<math>\sum_{n=-\infty}^\infty\left(\frac{7^2}{51}\right)^{|n|}</math><br>
 
<math>\sum_{n=-\infty}^\infty\left(\frac{7^2}{51}\right)^{|n|}</math><br>
 
<math>3+\sum_{p\in\mathbb{P}\land p\leq 17}(p-3)</math><br>
 
<math>3+\sum_{p\in\mathbb{P}\land p\leq 17}(p-3)</math><br>
 
<math>\ln(e)+\sum_{n=0}^{\infty}n\left (\frac{6}{7}\right)^{n+\exp(\mathbf{i}\pi)}</math><br>
 
<math>\ln(e)+\sum_{n=0}^{\infty}n\left (\frac{6}{7}\right)^{n+\exp(\mathbf{i}\pi)}</math><br>
 +
<math>\sum_{n=3}^{5}n^2</math><br>
  
==Integrale (2)==
+
==Integrale (3)==
 
<math>\displaystyle\int_1^{e^{50}}\frac{1}{x}\,\mathrm{d}x</math><br>
 
<math>\displaystyle\int_1^{e^{50}}\frac{1}{x}\,\mathrm{d}x</math><br>
 
<math>\int_0^\pi\sin(x)\,\mathrm{d}x \cdot\int_0^\sqrt{10} y \cdot y \cdot y \,\mathrm{d}y</math><br>
 
<math>\int_0^\pi\sin(x)\,\mathrm{d}x \cdot\int_0^\sqrt{10} y \cdot y \cdot y \,\mathrm{d}y</math><br>
 +
<math>\left\lfloor2^4 \int_{-\infty}^\infty \frac{\sin(x)}{x}\,\mathrm{d}x \right\rfloor</math><br>

Latest revision as of 14:36, 15 April 2014

Diese Lösung für MR_03 ist noch nicht vollständig, ich habe noch nicht alles eingetippt, was ich mir überlegt habe und ich denke weiter nach...

Die folgenden 17 Ausdrücke haben den Wert 50

Verschiedenes (6)





[HAKMEM #34]
mit dem Verhältnis des goldenen Schnitts

Grenzwerte (3)




Summen (5)






Integrale (3)