Difference between revisions of "NMMRUS 99 Loesung"
| Line 88: | Line 88: | ||
<math>k_0 = c + 72 - 8 k_0</math><br/> | <math>k_0 = c + 72 - 8 k_0</math><br/> | ||
<math>c = 9 k_0 - 72 = 9 (k_0 - 8)</math><br/> | <math>c = 9 k_0 - 72 = 9 (k_0 - 8)</math><br/> | ||
| + | |||
| + | == Gesamtlösung für <math>R_i</math> == | ||
| + | |||
| + | Die Gesamtlösung ist die Summe der homogenen und einer parikulären Lösung: | ||
| + | |||
| + | <math>R_i = c ({9\over 8})^i + 8 i + 72 - 8 k_0</math><br/> | ||
| + | |||
| + | Aus der Anfangsbedingung <math>R_0 = k_0</math> können wir nun das c bestimmen: | ||
| + | |||
| + | <math>k_0 = R_0 = c\cdot 1 + 8\cdot 0 + 72 - 8 k_0</math><br/> | ||
| + | <math>k_0 = c + 72 - 8 k_0</math><br/> | ||
| + | <math>c = 9 k_0 - 72 = 9 (k_0 - 8)</math><br/> | ||
| + | |||
| + | Die fast schlussendliche Formel für das <math>R_i</math> lautet somit: | ||
| + | |||
| + | <math>R_i = 9 (k_0 - 8)({9\over 8})^i + 8 i + 72 - 8 k_0</math><br/> | ||
| + | |||
| + | Das ist die allgemeine Form für die Kuhreste der jeweiligen Familie <math>i</math> ! Diese Formel erfüllt folgende Bedingung der Angabe: Der nächste Sohn nimmt eine Kuh mehr und seine Frau erhällt ein Neuntel des "Rests". Die letzte Frau bekommt nichts. | ||
| + | |||
| + | Impliziet steckt aber eine nicht genannte bedingung in der Angabe - nähmlich, dass es sich mit dem Divieren durch 9 immer ausgehen wird. Die obige Formel produziert ev. Achtel Kühe für die jeweiligen Reste. | ||
| + | |||
| + | Wenn man sich obige Formel ansieht, dann muss entweder <math>(k_0 - 8)</math> genügend oft durch 8 teilbar sein - oder <math>(k_0 - 8)</math> gleich Null sein. | ||
| + | |||
| + | == Fall A == | ||
| + | |||
| + | <math>k_0 - 8 = 0</math><br/> | ||
| + | <math>k_0 = 8</math><br/> | ||
| + | |||
| + | <math>R^A_i = 8 i + 72 - 64</math><br/> | ||
| + | <math>R^A_i = 8 i + 8</math><br/> | ||
| + | <math>R^A_i = 8 (i + 1)</math><br/> | ||
| + | |||
| + | Viel weiter oben haben wir auch die Bedingung für die <math>F_i</math>. | ||
| + | |||
| + | <math>F^A_i = R^A_i - R^A_{i-1}</math><br/> | ||
| + | <math>F^A_i = 8 (i + 1) - 8 (i - 1 + 1)</math><br/> | ||
| + | <math>F^A_i = 8 i + 8 - 8 i</math><br/> | ||
| + | <math>F^A_i = 8</math><br/> | ||
| + | |||
| + | Hmmm - jede Familie bekommt gleich viel Kühe - nämlich 8. Was heißt das für die 7 Pferde? Da jede Familie schon den gleichen Wert an Kühen hat - geht sich das nur aus, wenn jede Famile ein Pferd bekommt (denn Sieben ist nicht teilbar). Woraus unmittelbar folgt, dass es 7 Söhner sind und somit <math>n=7</math>. Die ursprüngliche Anzahl der Kühe ist <math>R_{n-1}</math>. | ||
| + | |||
| + | <math>R^A_{n-1} = R^A_6 = 8 (6 + 1) = 8 \cdot 7 = 56</math><br/> | ||
| + | |||
| + | |||
| + | == Fall B == | ||
| + | |||
| + | Es gibt aber noch eine Möglichkeit: <math>(k_0 - 8)</math> ist genügend oft durch 8 teilbar. Genügend oft heißt <math>n-1</math> mal. | ||
| + | |||
| + | <math>k_0 - 8 = z_0 \cdot 8^{n-1}</math><br/> | ||
| + | <math>k_0 = z_0 \cdot 8^{n-1} + 8</math><br/> | ||
| + | |||
| + | Das <math>z_0</math> kann jede beliebige, positive, ganze Zahl sein - später werden sich schon Einschränkungen ergeben. | ||
| + | |||
| + | <math>R_i = 9 (k_0 - 8) ({9\over 8})^i + 8 i + 72 - 8 k_0</math><br/> | ||
| + | |||
| + | Was bedeutet das für die Familien - und wieviel bekommen sie? | ||
| + | |||
| + | <math>F_i = R_i - R_{i-1}</math><br/> | ||
| + | <math>F_i = 9 (k_0 - 8) ({9\over 8})^i + 8 i + 72 - 8 k_0 - 9 (k_0 - 8) ({9\over 8})^{i-1} - 8 (i-1) - 72 + 8 k_0</math><br/> | ||
| + | <math>F_i = 9 (k_0 - 8)({9\over 8})^i - {9\over 8})^{i-1}) + 8</math><br/> | ||
| + | <math>F_i = 9 (k_0 - 8)({{9\cdot 9^{i-1} - 8\cdot 9^{i-1}}\over {8^i}}) + 8</math><br/> | ||
| + | <math>F_i = 9 (k_0 - 8) 9^{i-1} ({1 \over {8^i}}) + 8</math><br/> | ||
| + | <math>F_i = (k_0 - 8) ({9 \over 8})^i + 8</math><br/> | ||
Revision as of 17:48, 4 January 2009
Wie er seine Herde aufteilte
Am besten wir das Pferd in diesem Fall von Hinten aufgezäumt. D.h. man betrachtet den jüngsten Sohn (der als Letzer d'rankommt), dann den nächstätesten, der davor d'ran war usw. Der jüngste Sohn hat den Index 0, der zweitjüngste den Index 1, ... der älteste Sohn hat den Index n und es gibt n Söhne.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} sind die Kühe, die die Familie i erhält (Sohn + Frau) - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} ist der Rest der Kühe, die für Familie i zur Verfügung stehen (auch, wenn sie nicht immer alle nimmt - es gibt ja ev. noch jüngere Brüder). Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{n-1}} sind die Kühe, die dem ältesten Sohn zur Verfügung stehen - also alle Kühe, die der Farmer vererbt. Es wird sowohl nach dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{n-1}} (Anzahl der Kühe) als auch nach dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} (Anzahl der Söhne) gefragt.
Was wissen wir
Der jüngste (letze) Sohn nimmt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0} Kühe (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0} ist jetzt nur eine Natürliche Zahl, für die wir später dann noch Bedingungen finden werden), danach sind keine mehr über - auch nicht für seine Frau. Das ist die Anfangsbedingung.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_0 = R_0 = k_0}
Der Sohn i nimmt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 - i} Kühe. Da wir verkehrt zählen, nimmt der Sohn, der vorher dran ist (der mit dem höheren Index) eine Kuh weniger als, der der nachher dran ist. Seine Frau bekommt ein Neuntel, von dem Rest, der dann noch über ist. Für den Rest, der dann noch über ist, müssen wir die Kühe, die der Sohn nimmt vorher abziehen und erhalten folgende Bezieheung für die Menge an Kühen, die die Familie i erhält:
Das Neuntel von den Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 - i} läßt sich herausheben und von dem "Einser" abziehen, dann sind es Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \over 9} und die Fomel sieht etwas besser aus:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = (k_0 - i) {8 \over 9} + {R_i \over 9}}
Dem Sohn, der nachher drankommt (der mit dem niedrigeren Index) bleiben um soviel Kühe weniger als die Familie vorher bekommen hat. Das führ zu einer Beziehung zwischen den Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} 's:
Einsetzen vom Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} von dem wir ja schon 'was wissen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{i-1} = R_i - (k_0 - i) {8 \over 9} + {R_i \over 9}}
Das Neuntel vom rechteren Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} kann man wieder mit dem "Einser" vor dem linkeren Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} zusammen fassen und erhält:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{i-1} = {8\over 9} R_i - {8\over 9} (k_0 - i)}
Differenzengleichung
Durch ein klein wenig Umformung erhalten wir eine klassische imhonogen Differenzengleichung. Dazu müssen nur alle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} 's auf eine Seite:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {8 \over 9} R_i - R_{i-1} = {8\over 9} (k_0 - i)}
Derartige Differenzgleichungen löst man, indem man die homogene Variante (da sthet rechts = 0) auflöst, dann eine partikuläre Lösung findet. Das Gesamtergebnis ist die Summe der homogenen und der parikulären Lösung unter Berücksichtigung der Anfangsbedingung.
Homogene Lösung
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {8\over 9} R^H_i - R^H_{i-1} = 0}
Das Einsetzen die Lamdagleichung können wir uns hier sparen, da man sofort sieht, dass es mit dem Reziprokwert von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \over 9} als Faktor klappen wird:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^H_i = c ({9 \over 8})^ i}
Das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^H_i} hat zwar um einen Faktor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9 \over 8} mehr als das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^H_{i-1}} - der wird aber durch das davor "anuliert". Das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} ist ein beliebiger Faktor, der dann aber später durch die Anfangsbedingung eingeschränkt werden wird...
Partikuläre Lösung
Als Ansatz wird sich hier folgendes bewähren, da rechts vom = das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} liniear vorkommt:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^P_i = x i + y}
Gesucht wird jetzt ein passendes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} durch Einsetzen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {8\over 9} (x i + y) - ((i-1) x + y) = {8\over 9}(k_0 - i)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {8\over 9} (x i + y) - (x i -x + y) = {8\over 9}(k_0 - i)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -{1\over 9} x i -{1\over 9} y + x = {8\over 9} k_0 -{8\over 9} i}
Jetzt entledigen wir uns dem lästigen Neuntel durch Multiplizieren von 9:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x i - y + 9 x = 8 k_0 - 8 i}
Jetzt sieht man, dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x = -8} (wegen dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} ) - und wir setzen ein, was sein muss ( Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=8} ):
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -y + 72 = 8 k_0}
Die (eine) Partikuläre Lösung ist somit:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^P_i = 8 i + 72 - 8 k_0}
Gesamtlösung für Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i}
Die Gesamtlösung ist die Summe der homogenen und einer parikulären Lösung:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i = c ({9\over 8})^i + 8 i + 72 - 8 k_0}
Aus der Anfangsbedingung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_0 = k_0} können wir nun das c bestimmen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = R_0 = c\cdot 1 + 8\cdot 0 + 72 - 8 k_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = c + 72 - 8 k_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = 9 k_0 - 72 = 9 (k_0 - 8)}
Gesamtlösung für Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i}
Die Gesamtlösung ist die Summe der homogenen und einer parikulären Lösung:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i = c ({9\over 8})^i + 8 i + 72 - 8 k_0}
Aus der Anfangsbedingung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_0 = k_0} können wir nun das c bestimmen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = R_0 = c\cdot 1 + 8\cdot 0 + 72 - 8 k_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = c + 72 - 8 k_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = 9 k_0 - 72 = 9 (k_0 - 8)}
Die fast schlussendliche Formel für das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i} lautet somit:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i = 9 (k_0 - 8)({9\over 8})^i + 8 i + 72 - 8 k_0}
Das ist die allgemeine Form für die Kuhreste der jeweiligen Familie Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} ! Diese Formel erfüllt folgende Bedingung der Angabe: Der nächste Sohn nimmt eine Kuh mehr und seine Frau erhällt ein Neuntel des "Rests". Die letzte Frau bekommt nichts.
Impliziet steckt aber eine nicht genannte bedingung in der Angabe - nähmlich, dass es sich mit dem Divieren durch 9 immer ausgehen wird. Die obige Formel produziert ev. Achtel Kühe für die jeweiligen Reste.
Wenn man sich obige Formel ansieht, dann muss entweder Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (k_0 - 8)} genügend oft durch 8 teilbar sein - oder Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (k_0 - 8)} gleich Null sein.
Fall A
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 - 8 = 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = 8}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^A_i = 8 i + 72 - 64}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^A_i = 8 i + 8}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^A_i = 8 (i + 1)}
Viel weiter oben haben wir auch die Bedingung für die Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^A_i = R^A_i - R^A_{i-1}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^A_i = 8 (i + 1) - 8 (i - 1 + 1)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^A_i = 8 i + 8 - 8 i}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^A_i = 8}
Hmmm - jede Familie bekommt gleich viel Kühe - nämlich 8. Was heißt das für die 7 Pferde? Da jede Familie schon den gleichen Wert an Kühen hat - geht sich das nur aus, wenn jede Famile ein Pferd bekommt (denn Sieben ist nicht teilbar). Woraus unmittelbar folgt, dass es 7 Söhner sind und somit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=7} . Die ursprüngliche Anzahl der Kühe ist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{n-1}} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^A_{n-1} = R^A_6 = 8 (6 + 1) = 8 \cdot 7 = 56}
Fall B
Es gibt aber noch eine Möglichkeit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (k_0 - 8)} ist genügend oft durch 8 teilbar. Genügend oft heißt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} mal.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 - 8 = z_0 \cdot 8^{n-1}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_0 = z_0 \cdot 8^{n-1} + 8}
Das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_0} kann jede beliebige, positive, ganze Zahl sein - später werden sich schon Einschränkungen ergeben.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i = 9 (k_0 - 8) ({9\over 8})^i + 8 i + 72 - 8 k_0}
Was bedeutet das für die Familien - und wieviel bekommen sie?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = R_i - R_{i-1}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = 9 (k_0 - 8) ({9\over 8})^i + 8 i + 72 - 8 k_0 - 9 (k_0 - 8) ({9\over 8})^{i-1} - 8 (i-1) - 72 + 8 k_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = 9 (k_0 - 8)({9\over 8})^i - {9\over 8})^{i-1}) + 8}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = 9 (k_0 - 8)({{9\cdot 9^{i-1} - 8\cdot 9^{i-1}}\over {8^i}}) + 8}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = (k_0 - 8) ({9 \over 8})^i + 8}