Difference between revisions of "NMMRUS 10 Loesung"
| Line 35: | Line 35: | ||
18) <math>M + { 2 \over 3 } \cdot (M - S) = 3 \cdot (S - M + { 2 \over 3 } \cdot (M - S))</math><br/> | 18) <math>M + { 2 \over 3 } \cdot (M - S) = 3 \cdot (S - M + { 2 \over 3 } \cdot (M - S))</math><br/> | ||
| + | 19) <math>3 \cdot M + 2 \cdot M - 2 \cdot S = 9 \cdot S - 9 \cdot M + 6 \cdot M - 6 \cdot S</math><br/> | ||
| + | 20) <math>8 \cdot M = 5 \cdot S</math><br/> | ||
| + | 21) <math>M = {5 \over 8} \ cdot S = {5 \over 8} \cdot 44 = 55 \over 2 = 27.5</math> | ||
Revision as of 10:23, 2 September 2007
Wie alt ist Mary?
Marys Alter heute sei , das von Ann . Das damaligen Alter von Mary und Ann seien , (die verschieden "Zeiten" werden mit , und dargestellt). Die Angabe sieht dann so aus:
1)
2)
3)
4)
5)
Wir wissen aus 1), dass ist. Weil sich dieses "44" bis am Schluss durch alle Berechnungen schleift, es immer mit den wildesten Faktoren multipliziert und dividiert wird, ich dann geneigt bin ein Zwischenergebnis auszurechnen, das in den meisten Fällen einfach falsch ist, werde ich, bis kurz vor dem Schluss, statt "44" (Summe) schreiben: - die rechte Seite setzen wir in Zukunft immer für ein (wir sind lt. Fragestellung am Alter von Mary interessiert). Aus 2) drücken wir jetzt mit aus.
6) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = 2 \cdot (S - M + t_1)}
7) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = 2 \cdot S - 2 \cdot M + 2 \cdot t_1}
8) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot M = 2 \cdot (S + t_1)}
9) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {3 \over 2} \cdot M = S + t_1}
10) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1 = {3 \over 2} \cdot M - S}
Jetzt, wo wir Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} erfolgreich durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} und ausgedrückt haben, können wir das in 3) (vorher wird sie aber mit 2 multipliziert) einsetzen:
11) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot (M + {3 \over 2} \cdot M - S) = S - M + t_2}
12) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot M + 3 \cdot M - 2 \cdot S - S + M = t_2}
13) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = 6 \cdot M - 3 \cdot S}
Glücklich über Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} setzen wir das in 4) ein:
14) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot (M + t_3) = S - M + 6 \cdot M - 3 \cdot S}
15) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot t_3 = S - M + 6 \cdot M - 3 \cdot S - 3 \cdot M}
16) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot t_3 = 2 \cdot M - 2 \cdot S}
17)
Schlussendlich haben wir alle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_i} eliminiert und können in die letzte Gleichung 5) einsetzen:
18) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M + { 2 \over 3 } \cdot (M - S) = 3 \cdot (S - M + { 2 \over 3 } \cdot (M - S))}
19) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot M + 2 \cdot M - 2 \cdot S = 9 \cdot S - 9 \cdot M + 6 \cdot M - 6 \cdot S}
20) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8 \cdot M = 5 \cdot S}
21) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = {5 \over 8} \ cdot S = {5 \over 8} \cdot 44 = 55 \over 2 = 27.5}