Difference between revisions of "NMMRUS 14 Loesung"
| Line 15: | Line 15: | ||
4) <math>{v_B}\cdot{t_2} = 2b - 400</math> | 4) <math>{v_B}\cdot{t_2} = 2b - 400</math> | ||
| − | Das ist die Umsetzung der Angabe in mathematische Formeln (dass die Boote 10 Minuten | + | Das ist die Umsetzung der Angabe in mathematische Formeln (dass die Boote 10 Minuten warten ist irrelevant, da sie <b>beide</b> die 10 Minuten warten - es ist egal, dass sie nicht gleichzeitig 10 Minuten warten). |
1) wird durch <math>v_A</math> dividiert - 2) wird durch <math>v_B</math> dividiert, dann steht links in beiden Fällen <math>t_1</math>. | 1) wird durch <math>v_A</math> dividiert - 2) wird durch <math>v_B</math> dividiert, dann steht links in beiden Fällen <math>t_1</math>. | ||
Revision as of 13:53, 21 July 2007
Wie breit ist der Fluß?
Das langsamere Boot ist rot dargestellt und fährt mit der Geschwindigkeit - das schnellere Boot (blau) fährt mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_B} . Nach der Zeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} treffen sich die Beiden Boote zum ersten Mal bei Punkt X. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} ist die Breite des Flusses.
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_A}\cdot{t_1} = 720}
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_B}\cdot{t_1} = b - 720}
Nach Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} treffen sich die Boote zum zeiten Mal in Punkt Z.
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_A}\cdot{t_2} = b + 400}
4) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_B}\cdot{t_2} = 2b - 400}
Das ist die Umsetzung der Angabe in mathematische Formeln (dass die Boote 10 Minuten warten ist irrelevant, da sie beide die 10 Minuten warten - es ist egal, dass sie nicht gleichzeitig 10 Minuten warten).
1) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} dividiert - 2) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_B} dividiert, dann steht links in beiden Fällen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} .
5) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {t_1} = \frac{720}{v_A}}
6) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {t_1} = \frac{b - 720}{v_B}}
Wenn die linken Seiten gleich sind, dann können wir die rechten gleich setzen (und entledigen uns somit dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} .
7) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{720}{v_A} = \frac{b - 720}{v_B}}
Jetzt multiplizieren wir mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} und dividieren gleichzeitig durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (b - 720)} .
8) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{720}{b - 720} = \frac{v_A}{v_B}}
Die rechte Seite wird wegfallen, wenn wir mit 3) und 4) das gleiche machen, wie mit 1) und 2) - also 3) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} - und 4) durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_B} dividiert.
9) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = \frac{b + 400}{v_A}}
10) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = \frac{2b - 400}{v_B}}
Weil wieder die linken Seiten gleich sind, können wir die rechten gleich setzen und entledigen uns dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} .
11) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b + 400}{v_A} = \frac{2b - 400}{v_B}}
Ähnlich wie z'erst multiplizieren wir mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} und dividieren durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2b - 400)} .
12) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b + 400}{2b - 400} = \frac{v_A}{v_B}}
Die rechten Seiten von 8) und 12) sind gleich, darum können wir ihre linken Seiten gleich setzen - somit sind wir nun alle störenden Variablen los.
13) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{720}{b - 720} = \frac{b + 400}{2b - 400}}
Also: mal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (b - 720)} , mal Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2b - 400)} .
14) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 720\cdot(2b - 400) = (b + 400)\cdot(b - 720)}
Einfach ausmultiplizieren...
15) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot 720 \cdot b - 400 \cdot 720 = b^2 + b \cdot (400 - 720) - 400 \cdot 720}
Auf beiden Seiten steht Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -400 \cdot 720} - das fällt weg, wenn wir auf beiden Seiten Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 400 \cdot 720} addieren.
16) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot 720 \cdot b = b^2 + b \cdot (400 - 720)}
Nachdem jeder Summand den Faktor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} enthällt und wir doch annehmen dürfen, dass Der Fluss breiter als 0 Yards ist, dividieren wir jetzt durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} .
17 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \cdot 720 = b + 400 - 720}
Also -400 + 720, da links schon zwei mal 720 steht, werden es jetzt drei.
18) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \cdot 720 - 400 = b}
Jetzt nehmen wir einen Taschenrechner ;-)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 1760}
Der Fluss ist somit 1760 Yards breit.