Difference between revisions of "NMMRUS 14 Loesung"
| Line 5: | Line 5: | ||
[[Image:NMMRUS_14.png|Das langsamere Boot ist rot, das schnellere blau]] | [[Image:NMMRUS_14.png|Das langsamere Boot ist rot, das schnellere blau]] | ||
| − | Das langsamere Boot ist rot dargestellt und fährt mit der Geschwindigkeit < | + | Das langsamere Boot ist rot dargestellt und fährt mit der Geschwindigkeit <math>v_A</math> - das schnellere Boot (blau) fährt mit <math>v_B</math>. Nach der Zeit <math>t_1</math> treffen sich die Beiden Boote zum ersten Mal bei Punkt <b>X</b>. <math>b</math> ist die Breite des Flusses. |
1) <math>{v_A}\cdot{t_1} = 720</math><br/> | 1) <math>{v_A}\cdot{t_1} = 720</math><br/> | ||
2) <math>{v_B}\cdot{t_1} = b - 720</math> | 2) <math>{v_B}\cdot{t_1} = b - 720</math> | ||
| − | Nach < | + | Nach <math>t_2</math> treffen sich die Boote zum zeiten Mal. |
3) <math>{v_A}\cdot{t_2} = b + 400</math><br/> | 3) <math>{v_A}\cdot{t_2} = b + 400</math><br/> | ||
| Line 19: | Line 19: | ||
1) wird durch <math>v_A</math> dividiert - 2) wird durch <math>v_B</math> dividiert, dann steht links in beiden Fällen <math>t_1</math>. | 1) wird durch <math>v_A</math> dividiert - 2) wird durch <math>v_B</math> dividiert, dann steht links in beiden Fällen <math>t_1</math>. | ||
| − | 5) <math>{t_1} = \frac{720}{ | + | 5) <math>{t_1} = \frac{720}{v_A}</math><br/> |
6) <math>{t_1} = \frac{b - 720}{v_B}</math> | 6) <math>{t_1} = \frac{b - 720}{v_B}</math> | ||
Wenn die linken Seiten gleich sind, dann könne wir die Rechten gleich setzen (und entledigen uns somit dem <math>t_1</math>. | Wenn die linken Seiten gleich sind, dann könne wir die Rechten gleich setzen (und entledigen uns somit dem <math>t_1</math>. | ||
| − | 7) <math>\frac{720}{ | + | 7) <math>\frac{720}{v_A} = \frac{b - 720}{v_B}</math> |
Jetzt multiplizieren wir mit <math>v_A</math> und dividieren gleichzeitig durch <math>b - 720</math>. | Jetzt multiplizieren wir mit <math>v_A</math> und dividieren gleichzeitig durch <math>b - 720</math>. | ||
| Line 30: | Line 30: | ||
8) <math>\frac{720}{b - 720} = \frac{v_A}{v_B}</math> | 8) <math>\frac{720}{b - 720} = \frac{v_A}{v_B}</math> | ||
| − | Die rechte Seite wird wegfallen, wenn wir mit 3) 4) das gleiche machen, wie mit 1) 2) - also 3) wird durch <math>v_A</math> - und 4) durch <math>v_B</math> dividiert. | + | Die rechte Seite wird wegfallen, wenn wir mit 3) und 4) das gleiche machen, wie mit 1) und 2) - also 3) wird durch <math>v_A</math> - und 4) durch <math>v_B</math> dividiert. |
| + | |||
| + | 9) <math>t_2 = \frac{b + 400}{v_A}</math><br/> | ||
| + | 10) <math>t_2 = \frac{{2}{b} - 400}{v_B}</math> | ||
| + | |||
| + | Weil wieder die linken Seiten gleich sind, können wir die rechten gleich setzen und entledigen uns dem <math>t_2</math>. | ||
| + | |||
| + | 11) <math>\frac{b + 400}{v_a} = \frac{2b - 400}{v_B}</math> | ||
Revision as of 13:00, 21 July 2007
Wie breit ist der Fluß?
Das langsamere Boot ist rot dargestellt und fährt mit der Geschwindigkeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} - das schnellere Boot (blau) fährt mit . Nach der Zeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} treffen sich die Beiden Boote zum ersten Mal bei Punkt X. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} ist die Breite des Flusses.
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_A}\cdot{t_1} = 720}
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_B}\cdot{t_1} = b - 720}
Nach Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} treffen sich die Boote zum zeiten Mal.
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_A}\cdot{t_2} = b + 400}
4) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {v_B}\cdot{t_2} = {2}{b} - 400}
Das ist die Umsetzung der Angabe in mathematische Formeln (dass die Boote 10 Minuten waren ist irrelevant, da sie beide die 10 Minuten warten - es ist egal, dass sie nicht gleichzeitig 10 Minuten warten).
1) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} dividiert - 2) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_B} dividiert, dann steht links in beiden Fällen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} .
5) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {t_1} = \frac{720}{v_A}}
6) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {t_1} = \frac{b - 720}{v_B}}
Wenn die linken Seiten gleich sind, dann könne wir die Rechten gleich setzen (und entledigen uns somit dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} .
7) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{720}{v_A} = \frac{b - 720}{v_B}}
Jetzt multiplizieren wir mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} und dividieren gleichzeitig durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b - 720} .
8) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{720}{b - 720} = \frac{v_A}{v_B}}
Die rechte Seite wird wegfallen, wenn wir mit 3) und 4) das gleiche machen, wie mit 1) und 2) - also 3) wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} - und 4) durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_B} dividiert.
9) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = \frac{b + 400}{v_A}}
10) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = \frac{{2}{b} - 400}{v_B}}
Weil wieder die linken Seiten gleich sind, können wir die rechten gleich setzen und entledigen uns dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2} .
11) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b + 400}{v_a} = \frac{2b - 400}{v_B}}