MR 08 Loesung
Optimiertes Zuprosten
Durch Herumprobieren auf einem Zettel (was hier nicht wiedergegeben werden kann) kommt man schnell d'rauf, dass es fast mit einem natürlichen "um den Tisch weiterrücken" und dem Zuprosten der jeweiligen Gegenüber funktionieren könnte. Wenn man das aber mit einer geraden Anzahl an Personen (das bietet sich an, weil sich immer alle zuprosten können) nicht funktioniert. Das liegt daran, dass sich nachdem durch das Weiterrücken alle von der einen Seite des Tisches zur anderen gelangt sind, sich wieder ihren gleichen Partnern gegenüber sehen.
Im folgenden wird immer von der Nummer 0 wegnumeriert. Das hat den Vorteil, dass man beim Beweis mit der Modulorechnung, nicht künstlich ein dazu und danach wieder abziehen muss. Die Plätze für Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} Personen sind mit den Zahlen 0 bis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} benannt.
Jedoch funktioniert das Herumwandern um einen Tisch immer für eine ungerade Anzahl an Personen. Dabei steht aber immer eine Person frei (das ist der Platz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} ). Der Tisch hat zwei Seiten; auf der oberen Seite ist der erste Platz frei, der nächste hat die Nummer 0, dann folgt, 1 usw. bis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{n-1} \over 2}-1} . Die andere Seite des Tisches wird von links weg mit dem Platz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{n-1} \over 2}} , gefolgt von der nächsten Zahl, usw. bis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} benannt.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} & 0 & 1 & 2 & \cdots & {{n-1} \over 2}-1 \\ n-1 & n-2 & n-3 & n-4 & \cdots & {{n-1} \over 2} \end{matrix}}
In der obigen Darstellung sind die Plätze dargestellt. Die Personen haben die Gleichen Nummern (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \cdots n-1} . Zu Beginn nehmen die Personen die gleichen Plätze ein, die ihrer eigenen Nummer entspricht, dann prosten sich alle möglichen Gegenüber (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leftrightarrow n-2 , 1 \leftrightarrow n-3 , \cdots} ). Dann wandert jede Person zu dem Platz mit der nächst höheren Nummer weiter. Von Platz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} wird zu Platz 0 wewechselt.