NMMRUS 146 Loesung
Welche Strecke bewältigt der Kurier?
Ich rechne die Aufgabe lieber "allgemein" als mit Zahlen - Zahlen kann man am Schluss immer noch einsetzen. So muss man weniger schreiben (außer diesen Absatz) und sieht die Zusammenhänge besser.
Die "Länge" der Armee bzw. die Seitenlänge des Quadrats ist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} . Wir wissen schon, dass . Die Geschwindigkeit des Kuriers ist . Die Gewschwindigkeit der Armee ist . Die Stecke, die der Kurier in den einzelnen Abschnitten zurücklegt nenne ich die Zeit, die er für diesen Abschnitt braucht ist .
einfache (eindimensionale) Variante
Der Kurier reitet im ersten Abschnitt die Strecke - während die Armee in der gleiche Zeit die Strcke zurücklegt.
Durch "Umformen" entledigen wir uns dem und finden das .
Im Zweiten Abschnitt reitet der Kurier die Strecke - während die Armee die Stecke zurücklegt.
Wieder arbeiten wir das heraus um das auszudrücken.
Die Antwort aud die Frage ist .
Was uns noch zur endgültigen Beantwortung fehlt ist und . Dazu hilt uns ein Umstand, den wir noch nicht verwendet haben: Die Armee legt während dem Hin- und Herreiten genau die Strecke zurück. Die exakten Geschwindigkeiten und sind uninteressant bzw. aus der Aufgabenstellung nicht zu ermitteln. Das einzige worauf es ankommt ist der Quotient aus den Geschwindigkeiten - um wieviel die Armee langsamer vorankommt als der Kurier.
Dieser Quotient ist auch genau der Faktor um den die zurückgelegte Strecke der Armee kleiner ist als die des Kuriers. Die Strecke der Armee ist die Strecke des Kuriers mal q. Weiters ist die Strecke der Armee gleich ihre Länge:
Da sieht man jetzt auch schön, dass die Länge der Armee für die Berechnung des Quotienten irrelevant ist, denn man kann durch a kürzen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2+2q-1=0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{1,2}=-1\pm \sqrt{1+1}}
Der Quotient ist ganz sicher positiv, darum gibt es nur eine Lösung:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=\sqrt{2}-1}
Somit ist die Antwort auf die Frage "Welchen Weg legt der Kurier zurück" :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{2a}\over{1-(\sqrt{2}-1)^2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{2a}\over{-2+2\sqrt{2}}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{a}\over{\sqrt{2}-1}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{a\cdot (\sqrt{2}+1)}\over{(\sqrt{2}-1)\cdot({\sqrt{2}+1})}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{a\cdot (\sqrt{2}+1)}\over{2-1}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=a\cdot (\sqrt{2}+1)}
Das heißt, dass der Kurier eine Strecke zurücklegt, die aus einer Seitenlänge plus der Diagonale des Quadrates mit der Seitenlänge a entspricht.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \approx 120.71 Mi}
erweiterte (zweidimensionale) Variante
Laut Angabe reitet der Kurier von der Mitte der hinteren Linie weg (so wie in der animierten Skizze oben gezeigt). Es kommt aber ganz genau das gleiche heraus, wenn der Kurier von einer "Ecke" wegreitet - er muss die gleiche Strecke bewältigen und es sind weniger Abschnitte zu rechnen.
Der Abschnitt 1 ist jener an der hinteren und vorderen Flanke. Das Reiten an der hinteren und vorderen Flanke ist prinzipiell gleich. Der Abschnitt 2 ist jener, wo der Kurier in die gleiche Richtung, wie die Armee reitet. Der Abschnitt 3 ist jener, wo der Kurier entgegen der Richtung der Armee reitet.
Wir wissen schon aus der einfacheren Aufgabenstellung oben, dass wir niemals die Geschwindigkeiten der Armee und des Kuriers ermitteln können. Zum Rechnen brauchen wir kurz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K</maht> und <math>v_A} - die Geschwindigkeiten von Kurier und Armee. Ermittelt kann nur das Verhältnis zwischen Armeegeschwindigkeit und Kuriergeschwindigkeit werden.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = {v_A \over v_K}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A = q \cdot v_K}
Der Abschnitt 1 ist der, wo der Kurier "schräg" reitet. Das ganze ist ein rechtwinkeliges Dreieck dessen Hypertonuse, der zurückgelegte Weg des Kuriers Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_1} , dessen eine Kathete, der zurückgelegte Weg der Armee Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A\cdot t_1} und dessen zweite Kathete die Breite der Armee Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} ist.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_K\cdot t_1)^2 = (v_A\cdot t_1)^2 + a^2}
Das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_A} wird durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot q} ersetzt.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_K\cdot t_1)^2 = (v_K\cdot q\cdot t_1)^2 + a^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_K\cdot t_1)^2 - (v_K\cdot t_1\cdot q)^2 = a^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_K\cdot t_1)^2 \cdot (1 - q^2) = a^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K^2 \cdot t_1^2 \cdot (1 - q^2) = a^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1^2 = {a^2 \over v_K^2} \cdot {1 \over {1 - q^2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1 = {a \over v_K} \cdot {1 \over \sqrt{1 - q^2}}}
Im Abschnitt 2 reitet der Kurier in die gleiche Richtung wie die Armee. Der Kurier reitet von hinteren Ende der Armee zum vorderen, dabei läuft ihm das vordere Ende davon. Das vordere Ende hat definitionsgemäß einen vorsprung von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_2 = v_A\cdot t_2 + a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_2 = v_K\cdot q\cdot t_2 + a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_2 - v_K\cdot t_2\cdot q = a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_2\cdot (1 - q) = a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_2 = {a \over v_K} \cdot {1 \over {1 - q}}}
Im Zeitablauf reitet der Kurier das gleiche Dreieck wie im Abschnitt 1.
Im Abschnitt 3 reitet der Kurier von der vorderen Flanke zur Hinteren, dabei kommt ihm der Hintere Abschnitt entgegen, der zu Beginn a von ihm entfernt ist.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_3 + v_A\cdot t_3 = a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_3 + v_K\cdot q\cdot t_3 = a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_K\cdot t_3 \cdot (1 + q) = a}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_3 = {a \over v_K} \cdot {1 \over {1 + q}}}
Die Zeiten Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1, t_2, t_3} brauchen wir um die Gesamtzeit auszudrücken, die der ganze Vorgang dauert. Die Zeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1} kommt zwei Mal vor: einmal bei der hinteren Flanke und einmal bei der vorderen Flanke. Die Gesamtzeit ist somit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot t_1 + t_2 + t_3} . Das ist genau jene Zeit, die die Armee benötigt um ihre eigene Länge abzuschreiten. Somit:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = v_A\cdot (2\cdot t_1 + t_2 + t_3)}
Jetzt setzen wir alles ein, was wir schon wissen:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = v_K\cdot q\cdot {a \over v_K} \big ({2 \over \sqrt{1 - q^2}} + {1 \over {1 - q}} + {1 \over {1 + q}} \big )}
Das kürzt sich weg - beide Seiten können durch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} gekürzt werden - das einsame Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} vor der Klammer kommt auf die andere Seite:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {1 \over q} = {2 \over \sqrt{1 - q^2}} + {1 \over {1 - q}} + {1 \over {1 + q}}}
Die Summe auf der rechten Seite bekommt einen gemeinsamen Nenner - wir wissen, dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-q)\cdot(1+q) = 1 - q^2} ist.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {1 \over q} = {{2\cdot(1-q^2) + \sqrt{1 - q^2}\cdot(1 + q) + \sqrt{1 - q^2}\cdot(1 - q)} \over {\sqrt{1 - q^2}\cdot(1 - q^2)}}}
Das Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{1 - q^2}} stört ein wenig - es kommt aber in jedem der Summanden oberhalb des Bruches vor, denn Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - q^2) = \sqrt{1 - q^2}\cdot \sqrt{1 - q^2}} . Man kann also dadurch kürzen - eine Wurzel bleibt aber leider über.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {1 \over q} = {{2\cdot\sqrt{1 - q^2} + (1+q) + (1-q)} \over {1-q^2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {1 \over q} = {{2\cdot\sqrt{1 - q^2} + 2} \over {1-q^2}}}
Um die Wurzel los zu werden, bringen wir die Wurzel auf eine Seite und quadrieren dann beide Seiten. Durch das Quadrieren, bekommen wir aber zusätzliche Lösungen für q.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{1 - q^2}\over q} = 2\cdot \sqrt{1 - q^2} + 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{1 - q^2}\over {2q}} - 1 = \sqrt{1 - q^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{1 -q^2 - 2q}\over {2q}} = \sqrt{1 - q^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big ({{1 -q^2 - 2q}\over {2q} } \big )^2 = 1 - q^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{1 + q^4 + 4q^2 - 2q^2 -4q -4q^3}\over {4q^2}} = 1 - q^2}