NMMRUS 3 Loesung

From Wikiwasnonet
Revision as of 15:42, 15 September 2007 by Fossy (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Eierspeise

zurück zur Aufgabenstellung

Wir nennen die Anzahl an Eieren, die der Koch nach Hause getragen hat und nach denen gefragt wird x. Ein Duzent Eier koster p Cent (ein Duzent = 12 Stück).

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2) \cdot {p \over 12} = 12}

Das sind die Eier, die der Koch tatsächlich bezahlt hat (x-2) - zum ursprünglichen Preis (p). p wird durch 12 dividiert, weil p der Preis für ein Duzent Eier ist.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \cdot {{p - 1} \over 12} = 12}

Das sind die Eier, für die der Koch den Preis zurückrechnet - wie erwähnt p-1.

Weil mir das "durch 12" nicht gefällt, werden beide Gleichungen mit 12 multipliziert und dann gleich gesetzt:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \cdot (p-1) = 144}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2) \cdot p = x \cdot (p-1)}

Die letzte Gleichung wird ausmultipliziert.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xp - 2p = xp - x}

Auf beiden Seiten kann man xp subtrahieren.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2p = -x }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2p=x}

Die letze Erkenntnis kann man in eine der Gleichungen von vorher einsetzen (x=2p).

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2p-2) \cdot p = 144}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2p^2-2p=144}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^2-p=72}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^2-p-72=0}

Jetzt heißt es Quadratische Gleichungen auflösen ;-)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_{1,2} = {1 \over 2 } {+ \over -} \sqrt{{1 \over 4} + 72}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_{1,2} = {1 \over 2 } {+ \over -} \sqrt{{1 + 4\cdot72} \over 4}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_{1,2} = {1 \over 2 } {+ \over -} {\sqrt{1+288}} \over 2}}