f 1 ( z ) = | z | 2 z = z ¯ f 2 ( z ) = i | z | 2 z = ℜ <> ℑ ( z ) f 3 ( z ) = z 2 + | z | 2 2 z = ℜ ( z ) f 4 ( z ) = z 2 − | z | 2 2 z = ℑ ( z ) {\displaystyle {\begin{array}{c c c c c}f_{1}(z)&=&{\frac {\left|z\right|^{2}}{z}}&=&{\bar {z}}\\f_{2}(z)&=&{\frac {i\left|z\right|^{2}}{z}}&=&\Re <>\Im (z)\\f_{3}(z)&=&{\frac {z^{2}+\left|z\right|^{2}}{2z}}&=&\Re (z)\\f_{4}(z)&=&{\frac {z^{2}-\left|z\right|^{2}}{2z}}&=&\Im (z)\\\end{array}}}