Difference between revisions of "MR 03 Loesung"
| Line 37: | Line 37: | ||
<math>5\cdot \binom{5}{2}</math> | <math>5\cdot \binom{5}{2}</math> | ||
| − | <math> | + | <math>\int\limits_{-5}^{5} 2\cdot x \, dx</math> |
| − | <math> | + | <math>\int\limits_{-\sqrt{5}}^{\sqrt{5}} 4\cdot x^3 \, dx</math> |
| − | <math> | + | <math>\int\limits_{-\sqrt{\sqrt{5}}}^{\sqrt{\sqrt{5}}} 8\cdot x^7 \, dx</math> |
Fertig! Nach dem Schema der obigen 3 Formeln lassen sich <math>\infty</math> viele Formeln angeben (die Formeln unterscheiden sich alle, da in der ersten keine, in der zweiten zwei, in der dritten drei usw. Wurzeln bei den Grenzen stehen): | Fertig! Nach dem Schema der obigen 3 Formeln lassen sich <math>\infty</math> viele Formeln angeben (die Formeln unterscheiden sich alle, da in der ersten keine, in der zweiten zwei, in der dritten drei usw. Wurzeln bei den Grenzen stehen): | ||
| Line 53: | Line 53: | ||
<math>e = 2^n -1 ;</math> | <math>e = 2^n -1 ;</math> | ||
| − | <math> | + | <math>\int\limits_{-a}^{a} c\cdot x^e \, dx</math> |
Revision as of 12:20, 10 January 2014
Welche Formel ergibt 50?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot 5^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot (3^3-2)}
Die obige Formel gilt eigentlich nicht, weil 4 Zahlen darin vorkommen.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7^2+1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot 5 \cdot 5}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 14+17+19}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {10\cdot 10}\over 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{4\cdot 5\cdot 125}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i\in \{1..10\} \setminus 5} i}
Die gefällt mir am Besten. Die obige Formel bedeutet: "Was ist die Summe der ersten 10 natürlichen Zahlen - ohne fünf?"
Wo wir schon bei Prosa sind; wie schnell darf man im Ortsgebiet von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2\cdot 2\cdot 3)} -axing fahren?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {p_{95}+1}\over 10}
Erklärung: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_n} ist die n-te Primzahl.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \lfloor \sqrt{\sqrt{\sqrt{17^{11}}}} + 1 \right \rfloor}
Erklärung: Die "Hacken" bedeuten: abrunden auf die nächste ganze Zahl - manchmal auch floor() genannt.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-10x-2000 ; x \in \mathbb{R}^+ ; x=?}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 15+\binom{7}{3}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5\cdot \binom{5}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-5}^{5} 2\cdot x \, dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-\sqrt{5}}^{\sqrt{5}} 4\cdot x^3 \, dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-\sqrt{\sqrt{5}}}^{\sqrt{\sqrt{5}}} 8\cdot x^7 \, dx}
Fertig! Nach dem Schema der obigen 3 Formeln lassen sich Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} viele Formeln angeben (die Formeln unterscheiden sich alle, da in der ersten keine, in der zweiten zwei, in der dritten drei usw. Wurzeln bei den Grenzen stehen):
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}_0 ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = 2^{n+1} ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = {\underbrace{ \sqrt{} \sqrt{} \cdots \sqrt{} }_{n\text{ Wurzeln}}} 5 ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e = 2^n -1 ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-a}^{a} c\cdot x^e \, dx}