Difference between revisions of "MR 02 Loesung"
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
<math>2^2 + 2 = 6</math> | <math>2^2 + 2 = 6</math> | ||
− | <math>(2 + {2 \over 2})! = 6</math> | + | <math>\left (2 + {2 \over 2} \right )! = 6</math> |
<math> \binom{2 \cdot 2}{2} = 6 </math> | <math> \binom{2 \cdot 2}{2} = 6 </math> | ||
Line 19: | Line 19: | ||
<math>3! {3 \over 3} = 6</math> | <math>3! {3 \over 3} = 6</math> | ||
− | <math>(\sqrt[3]{3^3})! = 6</math> | + | <math>\left (\sqrt[3]{3^3} \right )! = 6</math> |
<math>\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \, dx = 6</math> | <math>\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \, dx = 6</math> | ||
Line 43: | Line 43: | ||
<math>7 - {7 \over 7} = 6</math> | <math>7 - {7 \over 7} = 6</math> | ||
− | <math>(\sqrt{8 + {8 \over 8}})! = 6</math> | + | <math>\left (\sqrt{8 + {8 \over 8}} \right )! = 6</math> |
− | <math>(\sqrt{9})! {9 \over 9} = 6</math> | + | <math>\left (\sqrt{9} \right )! {9 \over 9} = 6</math> |
<math>(\log 10 + \log 10 + \log 10)! = 6</math> | <math>(\log 10 + \log 10 + \log 10)! = 6</math> |
Revision as of 19:19, 31 March 2013
Drei Zahlen
Für den Rest aller ganzen Zahlen