Difference between revisions of "MR a1 Loesung Fossy"

From Wikiwasnonet
Jump to navigation Jump to search
Line 25: Line 25:
 
<math>q_2(x)={{(x-0)(x-1)(x-3)(x-4)(x-5)(x-6)}\over {(2-0)(2-1)(2-3)(2-4)(2-5)(2-6)}}={{x^6-19x^5+137x^4-461x^3+702x^2-360x}\over 48 }</math><br/><br/>
 
<math>q_2(x)={{(x-0)(x-1)(x-3)(x-4)(x-5)(x-6)}\over {(2-0)(2-1)(2-3)(2-4)(2-5)(2-6)}}={{x^6-19x^5+137x^4-461x^3+702x^2-360x}\over 48 }</math><br/><br/>
 
<math>q_3(x)={{(x-0)(x-1)(x-2)(x-4)(x-5)(x-6)}\over {(3-0)(3-1)(3-2)(3-4)(3-5)(3-6)}}={{x^6-18x^5+121x^4-372x^3+508x^2-240x}\over -36}</math><br/><br/>
 
<math>q_3(x)={{(x-0)(x-1)(x-2)(x-4)(x-5)(x-6)}\over {(3-0)(3-1)(3-2)(3-4)(3-5)(3-6)}}={{x^6-18x^5+121x^4-372x^3+508x^2-240x}\over -36}</math><br/><br/>
 +
<math>q_4(x)={{(x-0)(x-1)(x-2)(x-3)(x-5)(x-6)}\over {(4-0)(4-1)(4-2)(4-3)(4-5)(4-6)}}={{x^6-17x^5+107x^4-307x^3+396x^2-180x}\over 48}</math><br/><br/>
 +
<math>q_5(x)={{(x-0)(x-1)(x-2)(x-3)(x-4)(x-6)}\over {(5-0)(5-1)(5-2)(5-3)(5-4)(5-6)}}={{x^6-16x^5+95x^4-260x^3+324x^2-144x}\over -120}</math><br/><br/>
 +
<math>q_6(x)={{(x-0)(x-1)(x-2)(x-3)(x-4)(x-5)}\over{(6-0)(6-1)(6-2)(6-3)(6-4)(6-5)}}={{x^6-15x^5+85x^4-225x^3+274x^2-120x}\over 720}</math><br/><br/>

Revision as of 10:55, 25 January 2009

...und wie geht's weiter?

zurück zur Aufgabenstellung

Gegeben sind 7 Werte - die ersten 7 Werte. Gesucht ist eine Regel für die weiteren Werte. Nichts liegt näher, als das über ein Polynom zu lösen. wobei die gewünschte Zeile ist. Wir kennen ... .








Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0:


Das gesuchte ist dann blos die Summe der geiegneten q's mal dem gewünschten Wert an der jeweiligen Stelle: