Difference between revisions of "Jan Math 2008-12-05"

From Wikiwasnonet
Jump to navigation Jump to search
Line 209: Line 209:
 
<math>y'={ {c_4 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2}  } \over {2 e^{4 x^{1/2}}} }</math><br/>
 
<math>y'={ {c_4 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2}  } \over {2 e^{4 x^{1/2}}} }</math><br/>
 
<math>y'={ {c_4 \cdot x^{-1 \over 2}  } \over {e^{4 x^{1/2}}} }</math><br/>
 
<math>y'={ {c_4 \cdot x^{-1 \over 2}  } \over {e^{4 x^{1/2}}} }</math><br/>
 +
? wahrscheinlich falsch :-(
 +
 +
= - 6.8 h) =
 +
<math>\integ{{1 \over {sin^2x}} dx</math><br/>

Revision as of 14:16, 4 December 2008

allgemein

homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL

Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemeine Löung der homogenen

- 4.1 d)


- homogene -

D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)

- spezielle Lösung -

Einfach zweimal integrieren:

(kein +C, da man ja nur eine spezielle Lösung sucht!)

- Gesamtlösung -


(a,b beliebig)

- 4.1 e)


- homogene -


- spezielle -



- Gesamtlösung -


- 4.1 f)


- homogene (wie schon zwei Mal) -

- spezeille -




- Gesmatlösung -

- 4.2 c)




- allgemein -






[1]
[2]
Jetzt in [2] laut Anfangsbedingung einsetzen:


Jetzt in [1] laut Anfangsbedingung einsetzen:




- 4.2 d)




- allgemein -





[1]
[2]
Einsetzen in [2]


Einsetzen in [1]



- 4.3 a)









Einsetzen y(0)=1


Einsetzen y6)=1





- 4.3 b)









Einsetzen => lineares Gleichungssystem:


[1]


[2]
Subtrahiere [1] von [2]


Einsetzen in [1]



- 4.4

Vorläufig aufgeschoben...  ? Biegung ?

-4.7 g)



(* dx / )
(integrieren)


Probe:


passt

- 4.7 h)



(* dx / cosx / y)
(integrieren)

(e^ )

Probe:




-4.7 i)



(* dx / y / sinx)
(integrieren)
(e^ )

Probe:

()

passt

-4.8 g)




(* dx / x / y)
(integrieren)


Probe:






Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x y' + x y = c_2 {{x -x^2 + x^2} \over e^x}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x y' + x y = c_2 {x \over e^x}} passt
Ensetzen y(1)=1

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2=e}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=e{x \over {e^x}}}

- 4.8 h)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' \sqrt{x} + 2y=1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(0)=1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {dy \over dx} \sqrt{x} = 1 - 2y} (* dx / sqrt(x) / (1-2y))
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle { 1 \over {1-2y}} dy = { 1 \over \sqrt{x}} dx = x^{-{1 \over 2}} dx} (integrieren)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -{{ln(2y - 1)} \over 2} = 2 \sqrt{x} + c_1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -ln(2y - 1) = 4 \sqrt{x} + c_2} (e^ )

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2y -1 = {c_4 \over e^{4 x^{1/2}}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2y = {c_4 \over e^{4 x^{1/2}}} + 1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = {c_4 \over {2 e^{4 x^{1/2}}}} + {1 \over 2}}
Probe:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'={ {c_4 \cdot 2 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2} {e^{4 x^{1/2}}} } \over {({2 e^{4 x^{1/2}})}^2} }}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'={ {c_4 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2} } \over {2 e^{4 x^{1/2}}} }}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'={ {c_4 \cdot x^{-1 \over 2} } \over {e^{4 x^{1/2}}} }}
? wahrscheinlich falsch :-(

- 6.8 h)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \integ{{1 \over {sin^2x}} dx}