Difference between revisions of "Jan Math 2008-12-05"
| Line 4: | Line 4: | ||
<math>y''=0</math><br/> | <math>y''=0</math><br/> | ||
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)<br/> | D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)<br/> | ||
| − | <math>y_h=ax | + | <math>y_h=ax+b</math><br/> |
- spezielle Lösung -<br/> | - spezielle Lösung -<br/> | ||
<math>y_{sp}''=-6x</math><br/> | <math>y_{sp}''=-6x</math><br/> | ||
| Line 13: | Line 13: | ||
- Gesamtlösung -<br/> | - Gesamtlösung -<br/> | ||
<math>y=y_{sp}+y_h</math><br/> | <math>y=y_{sp}+y_h</math><br/> | ||
| − | <math>y=-x^3+ax | + | <math>y=-x^3+ax+b</math><br/> |
(a,b,c beliebig) | (a,b,c beliebig) | ||
= 4.1 e) = | = 4.1 e) = | ||
| Line 19: | Line 19: | ||
- homogene -<br/> | - homogene -<br/> | ||
<math>y_h''=0</math><br/> | <math>y_h''=0</math><br/> | ||
| − | <math>y_h=ax | + | <math>y_h=ax+b</math><br/> |
- spezielle -<br/> | - spezielle -<br/> | ||
<math>y_{sp}''=-6x+3</math><br/> | <math>y_{sp}''=-6x+3</math><br/> | ||
| Line 26: | Line 26: | ||
- Gesamtlösung -<br/> | - Gesamtlösung -<br/> | ||
<math>y=y_{sp}+y_h</math><br/> | <math>y=y_{sp}+y_h</math><br/> | ||
| − | <math>y=-x^3+ { 3 \over 2} x^2 +ax | + | <math>y=-x^3+ { 3 \over 2} x^2 +ax+b</math><br/> |
| − | |||
| − | |||
= 4.1 f) = | = 4.1 f) = | ||
<math>y''+12x^2-4x=1</math><br/> | <math>y''+12x^2-4x=1</math><br/> | ||
- homogene (wie schon zwei Mal) -<br/> | - homogene (wie schon zwei Mal) -<br/> | ||
| − | <math>y_h=ax | + | <math>y_h=ax+b</math><br/> |
- spezeille -<br/> | - spezeille -<br/> | ||
<math>y_{sp}''=-12x^2+4x+1</math><br/> | <math>y_{sp}''=-12x^2+4x+1</math><br/> | ||
<math>y_{sp}'=-4x^3+2x^2+x</math><br/> | <math>y_{sp}'=-4x^3+2x^2+x</math><br/> | ||
<math>y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2</math><br/> | <math>y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2</math><br/> | ||
| − | |||
<math>y_{sp2}=-x^4+{2 \over 3} x^3</math><br/> | <math>y_{sp2}=-x^4+{2 \over 3} x^3</math><br/> | ||
- Gesmatlösung - <br/> | - Gesmatlösung - <br/> | ||
| − | <math>y=-x^4+ {2 \over 3} x^3 + | + | <math>y=-x^4+ {2 \over 3} x^3 + + {1 \over 2} x^2 +ax+b</math> |
Revision as of 08:28, 4 December 2008
4.1 d)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''+6x=0}
- homogene -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=0}
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h=ax+b}
- spezielle Lösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}''=-6x}
Einfach zweimal integrieren:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}'=-3x^2}
(kein +C, da man ja nur eine spezielle Lösung sucht!)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^3}
- Gesamtlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=y_{sp}+y_h}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^3+ax+b}
(a,b,c beliebig)
4.1 e)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''+6x-3=0}
- homogene -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h''=0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h=ax+b}
- spezielle -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}''=-6x+3}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}'=-3x^2+3x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^3+ { 3 \over 2} x^2}
- Gesamtlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=y_{sp}+y_h}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^3+ { 3 \over 2} x^2 +ax+b}
4.1 f)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''+12x^2-4x=1}
- homogene (wie schon zwei Mal) -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h=ax+b}
- spezeille -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}''=-12x^2+4x+1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}'=-4x^3+2x^2+x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp2}=-x^4+{2 \over 3} x^3}
- Gesmatlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^4+ {2 \over 3} x^3 + + {1 \over 2} x^2 +ax+b}