Difference between revisions of "Jan Math 2008-12-05"

From Wikiwasnonet
Jump to navigation Jump to search
Line 1: Line 1:
== 4.1 d) ==
+
= 4.1 d) =
 
<math>y''+6x=0</math>
 
<math>y''+6x=0</math>
= homogene =
+
- homogene -
 
<math>y''=0</math>
 
<math>y''=0</math>
  
 
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)
 
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)
 
<math>y_h=ax^2+bx+c</math>
 
<math>y_h=ax^2+bx+c</math>
= spezielle Lösung =
+
- spezielle Lösung -
 
<math>y_{sp}''=-6x</math>
 
<math>y_{sp}''=-6x</math>
  
Line 16: Line 16:
  
 
<math>y_{sp}=-x^3</math>
 
<math>y_{sp}=-x^3</math>
= Gesamtlösung =
+
- Gesamtlösung -
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=-x^3+ax^2+bx+c</math>
 
<math>y=-x^3+ax^2+bx+c</math>
  
 
(a,b,c beliebig)
 
(a,b,c beliebig)
== 4.1 e) ==
+
= 4.1 e) =
 
<math>y''+6x-3=0</math>
 
<math>y''+6x-3=0</math>
= homogene =
+
- homogene -
 
<math>y_h''=0</math><br/>
 
<math>y_h''=0</math><br/>
 
<math>y_h=ax^2+bx+c</math>
 
<math>y_h=ax^2+bx+c</math>
= spezielle =
+
- spezielle -
 
<math>y_{sp}''=-6x+3</math><br/>
 
<math>y_{sp}''=-6x+3</math><br/>
 
<math>y_{sp}'=-3x^2+3x</math><br/>
 
<math>y_{sp}'=-3x^2+3x</math><br/>
 
<math>y_{sp}=-x^3+3/2 x^2</math>
 
<math>y_{sp}=-x^3+3/2 x^2</math>
= Gesamtlösung =
+
- Gesamtlösung -
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=-x^3+3/2 x^2 +ax^2+bx+c</math><br/>
 
<math>y=-x^3+3/2 x^2 +ax^2+bx+c</math><br/>
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung:
+
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):
  
 
<math>y=-x^3+ax^2+bx+c</math>
 
<math>y=-x^3+ax^2+bx+c</math>

Revision as of 08:03, 4 December 2008

4.1 d)

- homogene -

D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein) - spezielle Lösung -

Einfach zweimal integrieren:

(kein +C, da man ja nur eine spezielle Lösung sucht!)

- Gesamtlösung -

(a,b,c beliebig)

4.1 e)

- homogene -
- spezielle -

- Gesamtlösung -

Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):