Difference between revisions of "MR 07 Loesung"
Jump to navigation
Jump to search
(Created page with "==Die Perle des Abakus== zurück zur Aufgabenstellung Die Skizze hat ein relativ großes Loch, weil man so die Verhältnisse besser erkennen kann:") |
|||
Line 3: | Line 3: | ||
Die Skizze hat ein relativ großes Loch, weil man so die Verhältnisse besser erkennen kann: | Die Skizze hat ein relativ großes Loch, weil man so die Verhältnisse besser erkennen kann: | ||
+ | |||
+ | Durch das (gebohrte) Loch hat die Kugel die Deckkalotten verloren. Die Kugeln auf der Stange der Kugerlrechnenmaschine sitzen näher beieinander als der Durchmesser <math>D</math> der Kugel vorgibt. Dieses kürzere Maß nenne ich <math>h></math> und es hängt natürlich von <math>D</math> und <math>d</math> ab: | ||
+ | |||
+ | <math>h = sqrt(D^2 - d^2)</math> | ||
+ | |||
+ | Um das gesuchte Volumen der Kugel mit Durchmesser <math>D</math> mit dem Loch mit Durchmesser <math>d</math> zu finden führt (in diesem Fall) der einfachste und schnellste Weg über ein Integral der Querschnitte. Es wird von 0 bis <math>h over 2</math> integriert und das Ergebnis mal zwei genommen um das Gesamtvolumen zu erhalten, das auch aus der anderen Hälfte besteht. | ||
+ | |||
+ | <math></math> |
Revision as of 10:31, 16 September 2018
Die Perle des Abakus
Die Skizze hat ein relativ großes Loch, weil man so die Verhältnisse besser erkennen kann:
Durch das (gebohrte) Loch hat die Kugel die Deckkalotten verloren. Die Kugeln auf der Stange der Kugerlrechnenmaschine sitzen näher beieinander als der Durchmesser der Kugel vorgibt. Dieses kürzere Maß nenne ich und es hängt natürlich von und ab:
Um das gesuchte Volumen der Kugel mit Durchmesser mit dem Loch mit Durchmesser zu finden führt (in diesem Fall) der einfachste und schnellste Weg über ein Integral der Querschnitte. Es wird von 0 bis integriert und das Ergebnis mal zwei genommen um das Gesamtvolumen zu erhalten, das auch aus der anderen Hälfte besteht.