Difference between revisions of "MR 02 Loesung"
Jump to navigation
Jump to search
Line 22: | Line 22: | ||
<math>\int_{-\sqrt{\sqrt{3}}}^{\sqrt{\sqrt{3}}} \sqrt{3} ~ \left | x \right | \, dx = 6 </math> | <math>\int_{-\sqrt{\sqrt{3}}}^{\sqrt{\sqrt{3}}} \sqrt{3} ~ \left | x \right | \, dx = 6 </math> | ||
+ | |||
+ | <math>\cot(\arctan(\int_{3}^{\infty} 3 ~ x^{-3} \, dx)) = 6</math> | ||
<math>\sqrt{4} + \sqrt{4} + \sqrt{4} = 6</math> | <math>\sqrt{4} + \sqrt{4} + \sqrt{4} = 6</math> | ||
Line 45: | Line 47: | ||
<math>\left | \cos n \pi + \cos n \pi + \cos n \pi \right |! = 6 ~ \forall ~ n \in \Z</math> | <math>\left | \cos n \pi + \cos n \pi + \cos n \pi \right |! = 6 ~ \forall ~ n \in \Z</math> | ||
− | <math>(n (n - n) - e^{i \pi} - e^{i \pi} - e^{i \pi})! = 6 ~ \forall ~ n \in \ | + | <math>(n (n - n) - e^{i \pi} - e^{i \pi} - e^{i \pi})! = 6 ~ \forall ~ n \in \C</math> |
Revision as of 08:52, 22 March 2013
Drei Zahlen
Für den Rest aller ganzen Zahlen