Difference between revisions of "MR a1 Loesung Fossy"
| Line 32: | Line 32: | ||
<math>p(x)={{a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0}\over 720}</math><br/><br/> | <math>p(x)={{a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0}\over 720}</math><br/><br/> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{| | {| | ||
| − | |<math>a_6 | + | |<math>a_6</math> |
| − | |<math> | + | |<math>= 1 \cdot 1</math> |
|<math>+ 11 \cdot (-6)</math> | |<math>+ 11 \cdot (-6)</math> | ||
|<math>+ 21 \cdot 15</math> | |<math>+ 21 \cdot 15</math> | ||
| Line 51: | Line 44: | ||
|=12.883.300 | |=12.883.300 | ||
|- | |- | ||
| − | |<math>a_5 | + | |<math>a_5</math> |
| − | |<math> | + | |<math>= 1 \cdot (-21)</math> |
|<math>+ 11 \cdot (-6) \cdot (-20)</math> | |<math>+ 11 \cdot (-6) \cdot (-20)</math> | ||
|<math>+ 21 \cdot 15 \cdot (-19)</math> | |<math>+ 21 \cdot 15 \cdot (-19)</math> | ||
| Line 61: | Line 54: | ||
|=-194.641.140 | |=-194.641.140 | ||
|- | |- | ||
| − | |<math>a_4 | + | |<math>a_4</math> |
| − | |<math> | + | |<math>= 1 \cdot 175</math> |
|<math>+ 11 \cdot (-6) \cdot 155</math> | |<math>+ 11 \cdot (-6) \cdot 155</math> | ||
|<math>+ 21 \cdot 15 \cdot 137</math> | |<math>+ 21 \cdot 15 \cdot 137</math> | ||
| Line 71: | Line 64: | ||
|=1.112.190.700 | |=1.112.190.700 | ||
|- | |- | ||
| − | |<math>a_3 | + | |<math>a_3</math> |
| − | |<math> | + | |<math>= 1 \cdot (-735)</math> |
|<math>+ 11 \cdot (-6) \cdot (-580)</math> | |<math>+ 11 \cdot (-6) \cdot (-580)</math> | ||
|<math>+ 21 \cdot 15 \cdot (-461)</math> | |<math>+ 21 \cdot 15 \cdot (-461)</math> | ||
| Line 81: | Line 74: | ||
|=-2.966.471.100 | |=-2.966.471.100 | ||
|- | |- | ||
| − | |<math>a_2 | + | |<math>a_2</math> |
| − | |<math> | + | |<math>= 1 \cdot 1624</math> |
|<math>+ 11 \cdot (-6) \cdot 1044</math> | |<math>+ 11 \cdot (-6) \cdot 1044</math> | ||
|<math>+ 21 \cdot 15 \cdot 702</math> | |<math>+ 21 \cdot 15 \cdot 702</math> | ||
| Line 91: | Line 84: | ||
|=3.634.313.200 | |=3.634.313.200 | ||
|- | |- | ||
| − | |<math>a_1 | + | |<math>a_1</math> |
| − | |<math> | + | |<math>= 1 \cdot (-1764)</math> |
|<math>+ 11 \cdot (-6) \cdot (-720)</math> | |<math>+ 11 \cdot (-6) \cdot (-720)</math> | ||
|<math>+ 21 \cdot 15 \cdot (-360)</math> | |<math>+ 21 \cdot 15 \cdot (-360)</math> | ||
| Line 101: | Line 94: | ||
|=-1.598.267.760 | |=-1.598.267.760 | ||
|- | |- | ||
| − | |<math>a_0 | + | |<math>a_0</math> |
| | | | ||
| | | | ||
| Line 114: | Line 107: | ||
<math>p(x)={{12.883.300 x^6 -194.641.140 x^5 + 1.112.190.700 x^4 -2.966.471.100 x^3 + 3.634.313.200 x^2 -1.598.267.760 x + 720}\over 720}</math><br/> | <math>p(x)={{12.883.300 x^6 -194.641.140 x^5 + 1.112.190.700 x^4 -2.966.471.100 x^3 + 3.634.313.200 x^2 -1.598.267.760 x + 720}\over 720}</math><br/> | ||
| + | |||
| + | Das Polynom ist so konstruiert, dass für p(0) .. p(6) die oben angegebenen Werte herauskommen. Die Frage "wie geht's weiter?" lässt sich mit p(x) so beantworten: | ||
| + | |||
| + | <math>p(7)=89.079.831</math><br/> | ||
| + | <math>p(8)=355.262.121</math><br/> | ||
| + | <math>p(9)=1.066.485.931</math><br/> | ||
| + | ...<br/><br/> | ||
Revision as of 13:44, 25 January 2009
...und wie geht's weiter?
Gegeben sind 7 Werte - die ersten 7 Werte. Gesucht ist eine Regel für die weiteren Werte. Nichts liegt näher, als das über ein Polynom zu lösen. wobei die gewünschte Zeile ist. Wir kennen ... .
Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0:
Das gesuchte ist dann blos die Summe der geiegneten q's mal dem gewünschten Wert an der jeweiligen Stelle:
So jetzt weden nur mehr die Polynome addiert. Das KGV der Nenner ist 720 (das führt dann zu den Faktoren 1,-6,15,-20,15,-6 und 1). Ich addiere die Faktoren vor den Potenzen von x. Das Ergebnis ist folgendes Polynom - die Koefizienten sind in der Tabelle dahinter...
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot 1} | =12.883.300 | ||
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_5} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 \cdot (-21)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6) \cdot (-20)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15 \cdot (-19)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20) \cdot (-18)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15 \cdot (-17)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6) \cdot (-16)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot (-15)} | =-194.641.140 |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_4} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 \cdot 175} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6) \cdot 155} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15 \cdot 137} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20) \cdot 121} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15 \cdot 107} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6) \cdot 95} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot 85} | =1.112.190.700 |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_3} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 \cdot (-735)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6) \cdot (-580)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15 \cdot (-461)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20) \cdot (-372)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15 \cdot (-307)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6) \cdot (-260)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot (-225)} | =-2.966.471.100 |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_2} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 \cdot 1624} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6) \cdot 1044} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15 \cdot 702} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20) \cdot 508} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15 \cdot 396} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6) \cdot 324} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot 274} | =3.634.313.200 |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1 \cdot (-1764)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 11 \cdot (-6) \cdot (-720)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 21 \cdot 15 \cdot (-360)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 1211 \cdot (-20) \cdot (-240)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 111221 \cdot 15 \cdot (-180)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 312211 \cdot (-6) \cdot (-144)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + 13112221 \cdot (-120)} | =-1.598.267.760 |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0} | =720 |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x)={{12.883.300 x^6 -194.641.140 x^5 + 1.112.190.700 x^4 -2.966.471.100 x^3 + 3.634.313.200 x^2 -1.598.267.760 x + 720}\over 720}}
Das Polynom ist so konstruiert, dass für p(0) .. p(6) die oben angegebenen Werte herauskommen. Die Frage "wie geht's weiter?" lässt sich mit p(x) so beantworten:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(7)=89.079.831}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(8)=355.262.121}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(9)=1.066.485.931}
...