Difference between revisions of "MR a1 Loesung Fossy"
Line 22: | Line 22: | ||
<br/> | <br/> | ||
<math>q_0(x)={{(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)} \over { (0-1)(0-2)(0-3)(0-4)(0-5)(0-6)}} = {{x^6-21x^5+175x^4-735x^3+1624x^2-1764x+720}\over 720}</math><br/><br/> | <math>q_0(x)={{(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)} \over { (0-1)(0-2)(0-3)(0-4)(0-5)(0-6)}} = {{x^6-21x^5+175x^4-735x^3+1624x^2-1764x+720}\over 720}</math><br/><br/> | ||
− | <math>q_1(x)={{(x-0)(x-2)(x-3)(x-4)(x-5)(x-6)} \over {(1-0)(1-2)(1-3)(1-4)(1-5)(1-6)}}={{x^6-20x^5+155x^4-580x^3+ | + | <math>q_1(x)={{(x-0)(x-2)(x-3)(x-4)(x-5)(x-6)} \over {(1-0)(1-2)(1-3)(1-4)(1-5)(1-6)}}={{x^6-20x^5+155x^4-580x^3+1044x^2-720x}\over -120}</math><br/><br/> |
<math>q_2(x)={{(x-0)(x-1)(x-3)(x-4)(x-5)(x-6)}\over {(2-0)(2-1)(2-3)(2-4)(2-5)(2-6)}}={{x^6-19x^5+137x^4-461x^3+702x^2-360x}\over 48 }</math><br/><br/> | <math>q_2(x)={{(x-0)(x-1)(x-3)(x-4)(x-5)(x-6)}\over {(2-0)(2-1)(2-3)(2-4)(2-5)(2-6)}}={{x^6-19x^5+137x^4-461x^3+702x^2-360x}\over 48 }</math><br/><br/> | ||
<math>q_3(x)={{(x-0)(x-1)(x-2)(x-4)(x-5)(x-6)}\over {(3-0)(3-1)(3-2)(3-4)(3-5)(3-6)}}={{x^6-18x^5+121x^4-372x^3+508x^2-240x}\over -36}</math><br/><br/> | <math>q_3(x)={{(x-0)(x-1)(x-2)(x-4)(x-5)(x-6)}\over {(3-0)(3-1)(3-2)(3-4)(3-5)(3-6)}}={{x^6-18x^5+121x^4-372x^3+508x^2-240x}\over -36}</math><br/><br/> | ||
Line 36: | Line 36: | ||
<math>a_4=1\cdot 175 + 11\cdot (-6) \cdot 155 + 21\cdot 15\cdot 137 +1211\cdot (-20) \cdot 121 + 111221\cdot 15 \cdot 107 + 312211\cdot (-6) \cdot 95 + 13112221\cdot 85=1.112.190.700</math><br/> | <math>a_4=1\cdot 175 + 11\cdot (-6) \cdot 155 + 21\cdot 15\cdot 137 +1211\cdot (-20) \cdot 121 + 111221\cdot 15 \cdot 107 + 312211\cdot (-6) \cdot 95 + 13112221\cdot 85=1.112.190.700</math><br/> | ||
<math>a_3=1\cdot (-735) + 11\cdot (-6) \cdot (-580) + 21\cdot 15 \cdot (-461) + 1211\cdot (-20) \cdot (-372) + 111221\cdot 15 \cdot (-307) + 312211\cdot (-6) \cdot (-260) + 13112221\cdot (-225)=-2.966.471.100</math><br/> | <math>a_3=1\cdot (-735) + 11\cdot (-6) \cdot (-580) + 21\cdot 15 \cdot (-461) + 1211\cdot (-20) \cdot (-372) + 111221\cdot 15 \cdot (-307) + 312211\cdot (-6) \cdot (-260) + 13112221\cdot (-225)=-2.966.471.100</math><br/> | ||
− | <math>a_2=1\cdot 1624 + 11\cdot (-6) \cdot | + | <math>a_2=1\cdot 1624 + 11\cdot (-6) \cdot 1044 + 21 \cdot 15 \cdot 702 + 1211\cdot (-20) \cdot 508 + 111221\cdot 15 \cdot 396 + 312211\cdot (-6) \cdot 324 + 13112221\cdot 274 =3.634.313.200</math><br/> |
<math>a_1=1\cdot (-1764) + 11\cdot (-6) \cdot (-720) + 21\cdot 15 \cdot (-360) + 1211\cdot (-20) \cdot (-240) + 111221\cdot 15 \cdot (-180) + 312211\cdot (-6) \cdot (-144) + 13112221\cdot (-120)= -1.598.267.760</math><br/> | <math>a_1=1\cdot (-1764) + 11\cdot (-6) \cdot (-720) + 21\cdot 15 \cdot (-360) + 1211\cdot (-20) \cdot (-240) + 111221\cdot 15 \cdot (-180) + 312211\cdot (-6) \cdot (-144) + 13112221\cdot (-120)= -1.598.267.760</math><br/> | ||
<math>a_0=720</math><br/><br/> | <math>a_0=720</math><br/><br/> | ||
<math>p(x)={{27.898.150 x^6 -194.641.140 x^5 + 1.112.190.700 x^4 -2.966.471.100 x^3 + 3.634.287.064 x^2 -1.598.267.760 x + 720}\over 720}</math><br/> | <math>p(x)={{27.898.150 x^6 -194.641.140 x^5 + 1.112.190.700 x^4 -2.966.471.100 x^3 + 3.634.287.064 x^2 -1.598.267.760 x + 720}\over 720}</math><br/> |
Revision as of 12:17, 25 January 2009
...und wie geht's weiter?
Gegeben sind 7 Werte - die ersten 7 Werte. Gesucht ist eine Regel für die weiteren Werte. Nichts liegt näher, als das über ein Polynom zu lösen. wobei die gewünschte Zeile ist. Wir kennen ... .
Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0:
Das gesuchte ist dann blos die Summe der geiegneten q's mal dem gewünschten Wert an der jeweiligen Stelle:
So jetzt weden nur mehr die Polynome addiert. Das KGV der Nenner ist 720. Ich addiere die Faktoren vor den Potenzen von x. Das Ergebnis ist folgendes Polynom - die Koefizienten sind in der Tabelle dahinter...