|
|
Line 255: |
Line 255: |
| = - 6.24 d) = | | = - 6.24 d) = |
| <math>\int { 2 \over \sqrt[3] {4x-1}} \, dx</math><br/> | | <math>\int { 2 \over \sqrt[3] {4x-1}} \, dx</math><br/> |
| + | <math>u=4x-1</math><br/> |
| + | <math>{du \over dx} = 4</math><br/> |
| + | <math>dx = {du \over 4}</math><br/> |
| + | <math>\int { 2 \over \sqrt[3] {4x-1}} \, dx = {1 \over 4} \int {2 \over \sqrt[3]{u}} \, du={1 \over 4} \int {u^{-{1 \over 3}}} \, du</math><br/> |
| + | <math>={1 \over 4} \cdot {2 \over 3} u^{2 \over 3}</math><br/> |
| + | <math>={2 \over 12} (4x-1)^{2 \over 3}</math><br/> |
| + | <math>={2 \over 12} \sqrt[3]{(4x-1)^2}</math><br/> |
| | | |
| = - 6.25 d) = | | = - 6.25 d) = |
allgemein
homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL
Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemeine Löung der homogenen
- 4.1 d)
- homogene -
D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)
- spezielle Lösung -
Einfach zweimal integrieren:
(kein +C, da man ja nur eine spezielle Lösung sucht!)
- Gesamtlösung -
(a,b beliebig)
- 4.1 e)
- homogene -
- spezielle -
- Gesamtlösung -
- 4.1 f)
- homogene (wie schon zwei Mal) -
- spezeille -
- Gesmatlösung -
- 4.2 c)
- allgemein -
[1]
[2]
Jetzt in [2] laut Anfangsbedingung einsetzen:
Jetzt in [1] laut Anfangsbedingung einsetzen:
- 4.2 d)
- allgemein -
[1]
[2]
Einsetzen in [2]
Einsetzen in [1]
- 4.3 a)
Einsetzen y(0)=1
Einsetzen y6)=1
- 4.3 b)
Einsetzen => lineares Gleichungssystem:
[1]
[2]
Subtrahiere [1] von [2]
Einsetzen in [1]
- 4.4
Vorläufig aufgeschoben... ? Biegung ?
-4.7 g)
(* dx / )
(integrieren)
Probe:
passt
- 4.7 h)
(* dx / cosx / y)
(integrieren)
(e^ )
Probe:
-4.7 i)
(* dx / y / sinx)
(integrieren)
(e^ )
Probe:
()
passt
-4.8 g)
(* dx / x / y)
(integrieren)
Probe:
passt
Ensetzen y(1)=1
- 4.8 h)
(* dx / sqrt(x) / (1-2y))
(integrieren)
(e^ )
Probe:
? wahrscheinlich falsch :-(
- 6.8 h)
(das klappt mit u'=sinx und u=-cosx)
- 6.8 i)
?
- 6.9 e)
- 6.9 f)
- 6.22 d)
- 6.23 d)
- 6.24 d)
- 6.25 d)