Difference between revisions of "Jan Math 2008-12-05"
Line 235: | Line 235: | ||
<math>c=3</math><br/> | <math>c=3</math><br/> | ||
<math>F(x)=lnx+3</math><br/> | <math>F(x)=lnx+3</math><br/> | ||
+ | |||
+ | = - 6.9 f) = | ||
+ | <math>f(x)=2^x</math><br/> | ||
+ | <math>P(1/3)</math><br/> | ||
+ | <math>F(1)=3</math><br/> | ||
+ | <math>f(x)=e^{x ln(2)}=</math><br/> | ||
+ | <math>F(x)={1 \over ln2}e^{x ln(2)}+c</math><br/> | ||
+ | <math>3={1 \over ln2}e^{1 ln(2)}+c</math><br/> | ||
+ | <math>3={2 \over ln2}+c</math><br/> | ||
+ | <math>c=3-{2 \over ln2}</math><br/> | ||
+ | <math>F(x)={1 \over ln2}e^{x ln(2)}+3-{2 \over ln2}</math><br/> |
Revision as of 15:10, 4 December 2008
allgemein
homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL
Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemeine Löung der homogenen
- 4.1 d)
- homogene -
D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)
- spezielle Lösung -
Einfach zweimal integrieren:
(kein +C, da man ja nur eine spezielle Lösung sucht!)
- Gesamtlösung -
(a,b beliebig)
- 4.1 e)
- homogene -
- spezielle -
- Gesamtlösung -
- 4.1 f)
- homogene (wie schon zwei Mal) -
- spezeille -
- Gesmatlösung -
- 4.2 c)
- allgemein -
[1]
[2]
Jetzt in [2] laut Anfangsbedingung einsetzen:
Jetzt in [1] laut Anfangsbedingung einsetzen:
- 4.2 d)
- allgemein -
[1]
[2]
Einsetzen in [2]
Einsetzen in [1]
- 4.3 a)
Einsetzen y(0)=1
Einsetzen y6)=1
- 4.3 b)
Einsetzen => lineares Gleichungssystem:
[1]
[2]
Subtrahiere [1] von [2]
Einsetzen in [1]
- 4.4
Vorläufig aufgeschoben... ? Biegung ?
-4.7 g)
(* dx / )
(integrieren)
Probe:
passt
- 4.7 h)
(* dx / cosx / y)
(integrieren)
(e^ )
Probe:
-4.7 i)
(* dx / y / sinx)
(integrieren)
(e^ )
Probe:
()
passt
-4.8 g)
(* dx / x / y)
(integrieren)
Probe:
passt
Ensetzen y(1)=1
- 4.8 h)
(* dx / sqrt(x) / (1-2y))
(integrieren)
(e^ )
Probe:
? wahrscheinlich falsch :-(
- 6.8 h)
(das klappt mit u'=sinx und u=-cosx)
- 6.8 i)
?
- 6.9 e)
- 6.9 f)