Difference between revisions of "Jan Math 2008-12-05"
Line 105: | Line 105: | ||
<math>a=9</math><br> | <math>a=9</math><br> | ||
<math>y={1 \over 3} x^3 - {1 \over 2} x^2+9x+1</math><br/> | <math>y={1 \over 3} x^3 - {1 \over 2} x^2+9x+1</math><br/> | ||
+ | |||
+ | = 4.3 b) = | ||
+ | <math>y''-x+3=0</math> | ||
+ | <math>y(3)=1</math><br/> | ||
+ | <math>y(9)==10</math><br/> | ||
+ | <math>y_h=ax+b</math><br/> | ||
+ | <math>y_{sp}''=x-3</math><br> | ||
+ | <math>y_{sp}'={1 \over 2} x^2 - 3x</math><br/> | ||
+ | <math>y_{sp}={1 \over 6} x^3 - {3 \over 2} x^2</math><br/> | ||
+ | <math>y={1 \over 6} x^3 - {3 \over 2} x^2+ax+b</math><br/> | ||
+ | Einsetzen => lineares Gleichungssystem:<br/> | ||
+ | <math>1={1 \over 6} 3^3 - {3 \over 2} 3^2+a3+b</math><br/> | ||
+ | <math>1={27 \over 6} - {27 \over 2}+ 3a+b</math><br/> | ||
+ | <math>3a+b={6 \over 6} - {27 \over 6} + {81 \over 6}={60 \over 6}=10</math> [1]<br/> | ||
+ | <math>1={1 \over 6} 9^3 - {3 \over 2} 9^2+a9+b</math><br/> | ||
+ | <math>1={729 \over 6} - {243 \over 2} + 9a+b</math><br/> | ||
+ | <math>9a+b={6 \over 6} - {729 \over 6} + {729 \over 6}=1</math> [2]<br> | ||
+ | Subtrahiere [1] von [2]<br/> | ||
+ | <math>6a=1-10=-9</math><br/> | ||
+ | <math>a=-{9 \over 6}=-{3 \over 2}</math><br/> | ||
+ | Einsetzen in [1]<br/> | ||
+ | <math>3(-{3 \over 2})+b=10</math><br/> | ||
+ | <math>b=10+{9 \over 2}={29 \over 2}</math><br/> | ||
+ | <math>y={1 \over 6} x^3 - {3 \over 2} x^2-{3 \over 2}x+{29 \over 2}</math><br/> |
Revision as of 09:53, 4 December 2008
allgemein
homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL
Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemeine Löung der homogenen
4.1 d)
- homogene -
D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)
- spezielle Lösung -
Einfach zweimal integrieren:
(kein +C, da man ja nur eine spezielle Lösung sucht!)
- Gesamtlösung -
(a,b beliebig)
4.1 e)
- homogene -
- spezielle -
- Gesamtlösung -
4.1 f)
- homogene (wie schon zwei Mal) -
- spezeille -
- Gesmatlösung -
4.2 c)
- allgemein -
[1]
[2]
Jetzt in [2] laut Anfangsbedingung einsetzen:
Jetzt in [1] laut Anfangsbedingung einsetzen:
4.2 d)
- allgemein -
[1]
[2]
Einsetzen in [2]
Einsetzen in [1]
4.3 a)
Einsetzen y(0)=1
Einsetzen y6)=1
4.3 b)
Einsetzen => lineares Gleichungssystem:
[1]
[2]
Subtrahiere [1] von [2]
Einsetzen in [1]