Difference between revisions of "Jan Math 2008-12-05"
| Line 23: | Line 23: | ||
<math>y_{sp}''=-6x+3</math><br/> | <math>y_{sp}''=-6x+3</math><br/> | ||
<math>y_{sp}'=-3x^2+3x</math><br/> | <math>y_{sp}'=-3x^2+3x</math><br/> | ||
| − | <math>y_{sp}=-x^3+3 | + | <math>y_{sp}=-x^3+ { 3 \over 2} x^2</math><br/> |
- Gesamtlösung -<br/> | - Gesamtlösung -<br/> | ||
<math>y=y_{sp}+y_h</math><br/> | <math>y=y_{sp}+y_h</math><br/> | ||
| − | <math>y=-x^3+3 | + | <math>y=-x^3+ { 3 \over 2} x^2 +ax^2+bx+c</math><br/> |
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):<br/> | Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):<br/> | ||
<math>y=-x^3+ax^2+bx+c</math><br/> | <math>y=-x^3+ax^2+bx+c</math><br/> | ||
| Line 36: | Line 36: | ||
<math>y_{sp}''=-12x^2+4x+1</math><br/> | <math>y_{sp}''=-12x^2+4x+1</math><br/> | ||
<math>y_{sp}'=-4x^3+2x^2+x</math><br/> | <math>y_{sp}'=-4x^3+2x^2+x</math><br/> | ||
| − | <math>y_{sp}=-x^4+2 | + | <math>y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2</math><br/> |
| − | Wir wissen schon, dass uns wegen der homogenen Lösung der Faktor vor dem x^2 wurscht ist<br/> | + | Wir wissen schon, dass uns wegen der homogenen Lösung der Faktor vor dem <math>x^2</math> wurscht ist<br/> |
| − | <math>y_{sp2}=-x^4+2 | + | <math>y_{sp2}=-x^4+{2 \over 3} x^3</math><br/> |
- Gesmatlösung - <br/> | - Gesmatlösung - <br/> | ||
| − | <math>y=-x^4+2 | + | <math>y=-x^4+ {2 \over 3} x^3 + ax^2+bx+c</math> |
Revision as of 08:22, 4 December 2008
4.1 d)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''+6x=0}
- homogene -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=0}
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y_{h}=ax^{2}+bx+c}
- spezielle Lösung -
Einfach zweimal integrieren:
(kein +C, da man ja nur eine spezielle Lösung sucht!)
- Gesamtlösung -
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=-x^{3}+ax^{2}+bx+c}
(a,b,c beliebig)
4.1 e)
- homogene -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h=ax^2+bx+c}
- spezielle -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}''=-6x+3}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}'=-3x^2+3x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^3+ { 3 \over 2} x^2}
- Gesamtlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=y_{sp}+y_h}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^3+ { 3 \over 2} x^2 +ax^2+bx+c}
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^3+ax^2+bx+c}
4.1 f)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''+12x^2-4x=1}
- homogene (wie schon zwei Mal) -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h=ax^2+bx+c}
- spezeille -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}''=-12x^2+4x+1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}'=-4x^3+2x^2+x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2}
Wir wissen schon, dass uns wegen der homogenen Lösung der Faktor vor dem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2}
wurscht ist
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp2}=-x^4+{2 \over 3} x^3}
- Gesmatlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^4+ {2 \over 3} x^3 + ax^2+bx+c}