Difference between revisions of "Jan Math 2008-12-05"

From Wikiwasnonet
Jump to navigation Jump to search
Line 1: Line 1:
 
= 4.1 d) =
 
= 4.1 d) =
<math>y''+6x=0</math>
+
<math>y''+6x=0</math><br/>
- homogene -
+
- homogene -<br/>
<math>y''=0</math>
+
<math>y''=0</math><br/>
 
+
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)<br/>
D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)
+
<math>y_h=ax^2+bx+c</math><br/>
<math>y_h=ax^2+bx+c</math>
+
- spezielle Lösung -<br/>
- spezielle Lösung -
+
<math>y_{sp}''=-6x</math><br/>
<math>y_{sp}''=-6x</math>
+
Einfach zweimal integrieren:<br/>
 
+
<math>y_{sp}'=-3x^2</math><br/>
Einfach zweimal integrieren:
+
(kein +C, da man ja nur eine spezielle Lösung sucht!)<br/>
 
+
<math>y_{sp}=-x^3</math><br/>
<math>y_{sp}'=-3x^2</math>
+
- Gesamtlösung -<br/>
 
 
(kein +C, da man ja nur eine spezielle Lösung sucht!)
 
 
 
<math>y_{sp}=-x^3</math>
 
- Gesamtlösung -
 
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=y_{sp}+y_h</math><br/>
<math>y=-x^3+ax^2+bx+c</math>
+
<math>y=-x^3+ax^2+bx+c</math><br/>
 
 
 
(a,b,c beliebig)
 
(a,b,c beliebig)
 
= 4.1 e) =
 
= 4.1 e) =
<math>y''+6x-3=0</math>
+
<math>y''+6x-3=0</math><br/>
- homogene -
+
- homogene -<br/>
 
<math>y_h''=0</math><br/>
 
<math>y_h''=0</math><br/>
<math>y_h=ax^2+bx+c</math>
+
<math>y_h=ax^2+bx+c</math><br/>
- spezielle -
+
- spezielle -<br/>
 
<math>y_{sp}''=-6x+3</math><br/>
 
<math>y_{sp}''=-6x+3</math><br/>
 
<math>y_{sp}'=-3x^2+3x</math><br/>
 
<math>y_{sp}'=-3x^2+3x</math><br/>
<math>y_{sp}=-x^3+3/2 x^2</math>
+
<math>y_{sp}=-x^3+3/2 x^2</math><br/>
- Gesamtlösung -
+
- Gesamtlösung -<br/>
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=y_{sp}+y_h</math><br/>
 
<math>y=-x^3+3/2 x^2 +ax^2+bx+c</math><br/>
 
<math>y=-x^3+3/2 x^2 +ax^2+bx+c</math><br/>
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):
+
Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):<br/>
 
+
<math>y=-x^3+ax^2+bx+c</math><br/>
<math>y=-x^3+ax^2+bx+c</math>
+
= 4.1 f) =
 +
<math>y''+12x^2-4x=1</math><br/>
 +
- homogene (wie schon zwei Mal) -<br/>
 +
<math>y_h=ax^2+bx+c</math><br/>
 +
- spezeille -<br/>
 +
<math>y_{sp}''=-12x^2+4x+1</math><br/>
 +
<math>y_{sp}'=-4x^2+2x^2+x</math><br/>
 +
<math>y_{sp}=-

Revision as of 08:08, 4 December 2008

4.1 d)


- homogene -

D.h. y zweimal differenziert ist 0, da kann y maximal x hoch zwei sein (Polynom). Homogene Lösung (allgemein)

- spezielle Lösung -

Einfach zweimal integrieren:

(kein +C, da man ja nur eine spezielle Lösung sucht!)

- Gesamtlösung -


(a,b,c beliebig)

4.1 e)


- homogene -


- spezielle -



- Gesamtlösung -


Da a,b,c beliebig - im speziellen a - ist die allgemeine Lösung (diesmal ein 'anderes' a):

4.1 f)


- homogene (wie schon zwei Mal) -

- spezeille -


<math>y_{sp}=-