Difference between revisions of "MR a1 Loesung Fossy"
m (Fossy moved page NMMRUS a1 Loesung Fossy to MR a1 Loesung Fossy) |
|||
(One intermediate revision by the same user not shown) | |||
Line 15: | Line 15: | ||
Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie <math>q_j(i)</math> - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle <math>j</math> den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0: | Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie <math>q_j(i)</math> - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle <math>j</math> den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0: | ||
− | <math>q_j(x) = { \prod_{k \in \{0 .. 6\} | + | <math>q_j(x) = { \prod_{k \in \{0 .. 6\} \setminus j}{(x-k)} \over \prod_{k \in \{0 .. 6\} \setminus j}{(j-k)}}</math><br/> |
− | Das gesuchte <math>p(x)</math> ist dann | + | Das gesuchte <math>p(x)</math> ist dann bloß die Summe der geeigneten q's mal dem gewünschten Wert an der jeweiligen Stelle: |
<math>p(x) = 1\cdot q_0(x) + 11 \cdot q_1(x) + 21 \cdot q_2(x) + ... + 13112221 \cdot q_6(x)</math><br/> | <math>p(x) = 1\cdot q_0(x) + 11 \cdot q_1(x) + 21 \cdot q_2(x) + ... + 13112221 \cdot q_6(x)</math><br/> |
Latest revision as of 11:06, 17 June 2016
...und wie geht's weiter?
Gegeben sind 7 Werte - die ersten 7 Werte. Gesucht ist eine Regel für die weiteren Werte. Nichts liegt näher, als das über ein Polynom zu lösen. wobei die gewünschte Zeile ist. Wir kennen ... .
Also gesucht ist ein Polynom, das genau das oben stehende erfüllt - sonst nix. Die Suche ist einfach, wenn man andere Polynome addiert. Ich nenne sie - dieses Polynom (ich brauche 7 verschiedene solche) hat an der Stelle den Wert 1 - an den anderen (ganzzahligen) Stellen hat es den Wert 0:
Das gesuchte ist dann bloß die Summe der geeigneten q's mal dem gewünschten Wert an der jeweiligen Stelle:
So jetzt weden nur mehr die Polynome addiert. Das KGV der Nenner ist 720 (das führt dann zu den Faktoren 1,-6,15,-20,15,-6 und 1). Ich addiere die Faktoren vor den Potenzen von x. Das Ergebnis ist folgendes Polynom - die Koefizienten sind in der Tabelle dahinter...
=12.883.300 | ||||||||
=-194.641.140 | ||||||||
=1.112.190.700 | ||||||||
=-2.966.471.100 | ||||||||
=3.634.313.200 | ||||||||
=-1.598.267.760 | ||||||||
=720 |
Das Polynom ist so konstruiert, dass für p(0) .. p(6) die oben angegebenen Werte herauskommen. Die Frage "wie geht's weiter?" lässt sich mit p(x) so beantworten:
...