Difference between revisions of "MR 01 Loesung"
Jump to navigation
Jump to search
(Created page with "== Lösung in <math>\C</math> == <math>\begin{array}{c c c c c} f_1(z) & = & \frac{\left | z \right |^2}{z} & = & \bar{z} \\ f_2(z) & = & \frac{i \left | z \right |^2}{z…") |
m (Link zum Rätsel eingefügt.) |
||
| (4 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | Fossys Lösung für das Rätsel [[MR_01]]. | ||
| + | |||
== Lösung in <math>\C</math> == | == Lösung in <math>\C</math> == | ||
| − | <math> | + | {| |
| − | f_1(z) | + | | <math>f_1(z) = \frac{\left | z \right |^2}{z}</math> |
| − | f_2(z) | + | | <math>= \bar{z}</math> |
| − | f_3(z) | + | |- |
| − | f_4(z) | + | | <math>f_2(z) = \frac{i \left | z \right |^2}{z}</math> |
| − | \ | + | | <math>= \Re\gtrless\Im(z)</math> |
| + | |- | ||
| + | | <math>f_3(z) = \frac{z^2 + \left | z \right |^2}{2z}</math> | ||
| + | | <math>= \Re(z)</math> | ||
| + | |- | ||
| + | | <math>f_4(z) = \frac{z^2 - \left | z \right |^2}{2i z}</math> | ||
| + | | <math>= \Im(z)</math> | ||
| + | |} | ||
| + | |||
| + | <math>\forall z \in \C\setminus\{0\}</math> | ||
Latest revision as of 15:05, 14 May 2021
Fossys Lösung für das Rätsel MR_01.
Lösung in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \C}
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_1(z) = \frac{\left | z \right |^2}{z}} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \bar{z}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2(z) = \frac{i \left | z \right |^2}{z}} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \Re\gtrless\Im(z)} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \Re(z)} | |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_4(z) = \frac{z^2 - \left | z \right |^2}{2i z}} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \Im(z)} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall z \in \C\setminus\{0\}}