Difference between revisions of "MR 03 Loesung"
| Line 23: | Line 23: | ||
Wo wir schon bei Prosa sind; Wie schnell darf man im Ortsgebiet von <math>(2\cdot 2\cdot 3)</math>-axing fahren? | Wo wir schon bei Prosa sind; Wie schnell darf man im Ortsgebiet von <math>(2\cdot 2\cdot 3)</math>-axing fahren? | ||
| − | <math>\big ( sum_{i=1}^{100} i \big ) mod 100</math> | + | <math>\big ( \sum_{i=1}^{100} i \big ) mod 100</math> |
<math>{p_{95}+1}\over 10</math> | <math>{p_{95}+1}\over 10</math> | ||
Revision as of 11:40, 11 January 2014
Welche Formel ergibt 50?
Die obige Formel gilt eigentlich nicht, weil 4 Zahlen darin vorkommen.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cdot 5 \cdot 5}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 14+17+19}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {10\cdot 10}\over 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{4\cdot 5\cdot 125}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i\in \{1..10\} \setminus 5} i}
Die gefällt mir am Besten. Die obige Formel bedeutet: "Was ist die Summe der ersten 10 natürlichen Zahlen - ohne fünf?"
Wo wir schon bei Prosa sind; Wie schnell darf man im Ortsgebiet von -axing fahren?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big ( \sum_{i=1}^{100} i \big ) mod 100}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {p_{95}+1}\over 10}
Erklärung: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_n} ist die n-te Primzahl.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \lfloor \sqrt{\sqrt{\sqrt{17^{11}}}} + 1 \right \rfloor}
Erklärung: Die "Hacken" bedeuten: abrunden auf die nächste ganze Zahl - manchmal auch floor() genannt.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-10x-2000 ; x \in \mathbb{R}^+ ; x=?}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5\cdot \binom{5}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ggT(1050, 1650, 3850)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kgV(2, 10, 25)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{-5}^{5} 2\cdot x \, dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{\left | x \right | \leqslant \sqrt{\sqrt{5}}} 8\cdot x^7 \, dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{\left | x \right | \leqslant \sqrt{\sqrt\sqrt{{5}}}} 16\cdot x^{15} \, dx}
Fertig! Nach dem Schema der obigen 3 Formeln lassen sich Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} viele Formeln angeben (die Formeln unterscheiden sich alle, da in der ersten eine, in der zweiten zwei, in der dritten drei usw. Wurzeln um den 5er stehen):
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}\setminus 0 ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = 2^{n+1} ;}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_{\left | x \right | \leqslant {\underbrace{ \sqrt{ \sqrt{ \cdots \sqrt{5}}} }_{n\text{ Wurzeln}}}} c\cdot x^e \, dx}