Difference between revisions of "MR 02 Loesung"
| Line 48: | Line 48: | ||
<math>(\log 10 + \log 10 + \log 10)! = 6</math> | <math>(\log 10 + \log 10 + \log 10)! = 6</math> | ||
| + | |||
| + | <math>\sqrt{215 + {215 \over 215}} = 6</math> | ||
| + | |||
| + | <math>\sqrt{217 + {217 \over 217}} = 6</math> | ||
Für den Rest aller ganzen Zahlen | Für den Rest aller ganzen Zahlen | ||
Revision as of 09:49, 31 March 2013
Drei Zahlen
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0! + 0! + 0!)! = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6 {6 \over 6} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt[6]{6^6} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {{\cot{\pi \over 6} \cdot \cot{\pi \over 6}} \over {\sin{\pi \over 6}}} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7 - {7 \over 7} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sqrt{9})! {9 \over 9} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\log 10 + \log 10 + \log 10)! = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{215 + {215 \over 215}} = 6}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{217 + {217 \over 217}} = 6}
Für den Rest aller ganzen Zahlen
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n (n - n) - e^{i \pi} - e^{i \pi} - e^{i \pi})! = 6 ~ \forall ~ n \in \C}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left | e^{n i \pi} + e^{n i \pi} + e^{n i \pi} \right |! = 6 ~ \forall ~ n \in \Z}