Difference between revisions of "MR 01 Loesung"

From Wikiwasnonet
Jump to navigation Jump to search
Line 11: Line 11:
 
| <math>= \Re(z)</math>
 
| <math>= \Re(z)</math>
 
|-
 
|-
| <math>f_4(z) = \frac{z^2 - \left | z \right |^2}{2z}</math>
+
| <math>f_4(z) = \frac{z^2 - \left | z \right |^2}{2i z}</math>
 
| <math>= \Im(z)</math>
 
| <math>= \Im(z)</math>
 
|}
 
|}
  
 
<math>\forall z \in \C\setminus\{0\}</math>
 
<math>\forall z \in \C\setminus\{0\}</math>

Revision as of 14:44, 9 July 2012

Lösung in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \C}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_4(z) = \frac{z^2 - \left | z \right |^2}{2i z}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \Im(z)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall z \in \C\setminus\{0\}}