Difference between revisions of "MR 01 Loesung"

From Wikiwasnonet
Jump to navigation Jump to search
Line 2: Line 2:
  
 
{|
 
{|
| <math>f_1(z)</math>
+
| <math>f_1(z) = \frac{\left | z \right |^2}{z}</math>
| =  
+
| <math>= \bar{z}</math>
| <math>\frac{\left | z \right |^2}{z}</math>
 
| =
 
| <math>\bar{z}</math>
 
 
|-
 
|-
| <math>f_2(z)</math>
+
| <math>f_2(z) = \frac{i \left | z \right |^2}{z}</math>
| =  
+
| <math>= \Re\gtrless\Im(z)</math>
| <math>\frac{i \left | z \right |^2}{z}</math>
 
| =
 
| <math>\Re<>\Im(z)</math>
 
 
|-
 
|-
| <math>f_3(z)</math>
+
| <math>f_3(z) = \frac{z^2 + \left | z \right |^2}{2z}</math>
=  
+
| <math>= \Re(z)</math>
| <math>\frac{z^2 + \left | z \right |^2}{2z}</math>
 
| =
 
| <math>\Re(z)</math>
 
 
|-
 
|-
| <math>f_4(z)</math>
+
| <math>f_4(z) = \frac{z^2 - \left | z \right |^2}{2z}</math>
| =  
+
| <math>= \Im(z)</math>
| <math>\frac{z^2 - \left | z \right |^2}{2z}</math>
 
| =
 
| <math>\Im(z)</math>
 
 
|}
 
|}

Revision as of 18:13, 5 July 2012

Lösung in