Difference between revisions of "NMMRUS 123 Loesung"

From Wikiwasnonet
Jump to navigation Jump to search
Line 44: Line 44:
 
<math>t=136.182573</math> min<br/>
 
<math>t=136.182573</math> min<br/>
  
D.h. Die ganze Aktion dauert 136.18 Minuten.
+
D.h. Die ganze Aktion dauert 2 Stunden 16 Minuten und 10.95 Sekunden.

Revision as of 10:06, 2 January 2009

Das Tandem

zurück zur Aufgabenstellung

Wie verfahren die Drei? Zu Fuß ist A am schnellsten - er solltete die länste Strecke zurücklegen, B die andere Strecke und C sollte nie gehen und immer am Rad fahren.

Am Besten beginnt B zu maschieren, während A+C mit dem Tandem losdüsen. Am Punkt X wird A von C abgesetzt und maschiert Richtung Ziel. C fährt alleine mit dem Rad zurück um B abzuholen bei Y hat C B erreicht - beide radeln jetzt Richtung Ziel. X wurde so gewählt, dass A, B+C gleichzeitig eintreffen. Die Konstilation ist so gewählt, dass B eine kürzere Strecke zurücklegen muss wie A. Weiters sind die ganze Zeit alle 3 "beschäftigt" => es gibt keine Totzeiten => das ist die optimale Lösung.

Problem: Wo ist X - wo ist Y - und wie lange dauert das alles? Los geht's:

Error creating thumbnail: Unable to save thumbnail to destination

B marschiert Richtung Y während A+C losradeln, bei X wird A abgesetzt und C radelt wieder zurück zu Y.

Laut Angabe M/min; M/min; M/min; M/min; L=40M.

Da wir ab nun mit "Zeiten" rechnen (Zeit = Weg / Geschwindigkeit), will ich jetzt die Reziprokwerte einführen und diese (?) Zeitikeiten nennen: a=10min/M; b=15min/M; c=20min/M; f= 1.5min/M.



Damit lässt sich y lösen:




Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y={{2xf} \over {b+f}}}

Ab nun ist y kein Thema mehr, da wir es mittels x ausdrücken können. Ab nun suchen wir x, dass so gewählt wird, dass A genausolange maschiert wie, C braucht um B abzuholen und zum Ziel zu gelangen...

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=f x + a (L-x)} [1]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=t_1+(L-y) f}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t={{2xf} \over {b+f}} b + (L - {{2xf} \over {b+f}}) f } [2]

Jetzt wird [1] und [2] zusammengeführt:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(f-a-{{2fb}\over {b+f}}+{{2f^2}\over {b+f}})=L f - a L}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x{{(b+f)(f-a)-2fb+2f^2}\over {b+f}} = L(f-a)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{L(f-a)(b+f)}\over {(b+f)(f-a)-2f(b-f)}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x={{40(1.5-10)(15+1.5)}\over {(15+1.5)(1.5-10)-2\cdot 1.5\cdot (15 - 1.5)}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=31.037344} M
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=f x + a(L-x)=f x + aL -ax=x(f-a)+aL}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=136.182573} min

D.h. Die ganze Aktion dauert 2 Stunden 16 Minuten und 10.95 Sekunden.