|
|
| (29 intermediate revisions by the same user not shown) |
| Line 133: |
Line 133: |
| | Vorläufig aufgeschoben... <math>M_b</math> ? Biegung ? | | Vorläufig aufgeschoben... <math>M_b</math> ? Biegung ? |
| | | | |
| − | = -4.7 g) = | + | = - 4.7 g) = |
| | <math>y'-y^2cosx=0</math><br/> | | <math>y'-y^2cosx=0</math><br/> |
| | <math>y'=y^2cosx</math><br/> | | <math>y'=y^2cosx</math><br/> |
| Line 159: |
Line 159: |
| | <math>y' cosx + y sinx = c_3 (-sinx cosx + sinx cosx) = 0</math><br/> | | <math>y' cosx + y sinx = c_3 (-sinx cosx + sinx cosx) = 0</math><br/> |
| | | | |
| − | = -4.7 i) = | + | = - 4.7 i) = |
| | <math>y'sinx + y=0</math><br/> | | <math>y'sinx + y=0</math><br/> |
| | <math>y'sinx=-y</math><br/> | | <math>y'sinx=-y</math><br/> |
| Line 172: |
Line 172: |
| | <math>y' sinx = -y</math> passt<br/> | | <math>y' sinx = -y</math> passt<br/> |
| | | | |
| − | = -4.8 g) = | + | = - 4.8 g) = |
| | <math>x y' + x y = y</math><br/> | | <math>x y' + x y = y</math><br/> |
| | <math>y(1)=1</math><br/> | | <math>y(1)=1</math><br/> |
| Line 193: |
Line 193: |
| | <math>c_2=e</math><br/> | | <math>c_2=e</math><br/> |
| | <math>y=e{x \over {e^x}}</math> | | <math>y=e{x \over {e^x}}</math> |
| − | = - 4.8 h) =
| + | |
| − | <math>y' sqrt(x) + 2y=1</math><br/> | + | = - 4.8 h) = |
| | + | <math>y' \sqrt{x} + 2y=1</math><br/> |
| | <math>y(0)=1</math><br/> | | <math>y(0)=1</math><br/> |
| | + | <math>{dy \over dx} \sqrt{x} = 1 - 2y</math> (* dx / sqrt(x) / (1-2y))<br/> |
| | + | <math>{ 1 \over {1-2y}} dy = { 1 \over \sqrt{x}} dx = x^{-{1 \over 2}} dx</math> (integrieren)<br/> |
| | + | <math>-{{ln(2y - 1)} \over 2} = 2 \sqrt{x} + c_1</math><br/> |
| | + | <math>-ln(2y - 1) = 4 \sqrt{x} + c_2</math> (e^ )<br/> |
| | + | <math>{1 \over {2y -1}} = c_3 e^{4 x^{1 \over 2}}</math><br/> |
| | + | <math>2y -1 = {c_4 \over e^{4 x^{1 \over 2}}}</math><br/> |
| | + | <math>2y = {c_4 \over e^{4 x^{1 \over 2}}} + 1</math><br/> |
| | + | <math>y = {c_4 \over {2 e^{4 x^{1 \over 2}}}} + {1 \over 2}</math><br/> |
| | + | Probe:<br/> |
| | + | <math>y'={ {-c_4 \cdot 2 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2} {e^{4 x^{1 \over 2}}} } \over {({2 e^{4 x^{1/2}})}^2} }</math><br/> |
| | + | <math>y'={ {-c_4 \cdot 4 \cdot {1 \over 2} x^{-1 \over 2} } \over {2 e^{4 x^{1/2}}} }</math><br/> |
| | + | <math>y'={ {-c_4 \cdot x^{-1 \over 2} } \over {e^{4 x^{1/2}}} }</math><br/> |
| | + | <math>y' \sqrt{x}={ {-c_4 \cdot x^{-1 \over 2} \cdot x^{1 \over 2} } \over {e^{4 x^{1 \over 2}}} }</math><br/> |
| | + | <math>={ -c_4 \over {e^{4 x^{1 \over 2}}} }</math><br/> |
| | + | <math>y' \sqrt{x} + 2y={ {-c_4 \over {e^{4 x^{1 \over 2}}}} + {c_4 \over e^{4 x^{1/2}}} + 1}=1</math> passt<br/> |
| | + | |
| | + | = - 6.8 h) = |
| | + | <math>\int {1 \over {sin^2 x}} \, dx</math><br/> |
| | + | <math>({u \over v})'={{u'v - u v'} \over {v^2}}</math><br/> |
| | + | <math>v=sinx</math><br/> |
| | + | <math>u'v - u v'= 1</math><br/> |
| | + | <math>v^2=sin^2 x</math><br/> |
| | + | <math>v'=cosx</math><br/> |
| | + | <math>u' sinx - u cosx = 1</math> (das klappt mit u'=sinx und u=-cosx)<br/> |
| | + | <math>u=-cosx</math><br/> |
| | + | <math>\int {1 \over {sin^2 x}} \, dx = {-cosx \over sinx} +c = -{cosx \over sinx} +c</math><br/> |
| | + | |
| | + | = - 6.8 i) = |
| | + | <math>\int {1 \over {1+x^2}}\, dx</math><br/> |
| | + | ? |
| | + | |
| | + | = - 6.9 e) = |
| | + | <math>f(x)={1 \over x}</math><br/> |
| | + | <math>P(e/4)</math><br/> |
| | + | <math>F(e)=4</math><br/> |
| | + | <math>F(x)=lnx + c</math><br/> |
| | + | <math>lne+c=4</math><br/> |
| | + | <math>1+c=4</math><br/> |
| | + | <math>c=3</math><br/> |
| | + | <math>F(x)=lnx+3</math><br/> |
| | + | |
| | + | = - 6.9 f) = |
| | + | <math>f(x)=2^x</math><br/> |
| | + | <math>P(1/3)</math><br/> |
| | + | <math>F(1)=3</math><br/> |
| | + | <math>f(x)=e^{x ln(2)}=</math><br/> |
| | + | <math>F(x)={1 \over ln2}e^{x ln(2)}+c</math><br/> |
| | + | <math>3={1 \over ln2}e^{1 ln(2)}+c</math><br/> |
| | + | <math>3={2 \over ln2}+c</math><br/> |
| | + | <math>c=3-{2 \over ln2}</math><br/> |
| | + | <math>F(x)={1 \over ln2}e^{x ln(2)}+3-{2 \over ln2}</math><br/> |
| | + | |
| | + | = - 6.22 d) = |
| | + | <math>\int { 1 \over \sqrt {1-x}} \, dx</math><br/> |
| | + | <math>u=1-x</math><br/> |
| | + | <math>{du \over dx}=-1</math><br/> |
| | + | <math>dx=-dx</math><br/> |
| | + | <math>\int { 1 \over \sqrt {1-x}} \, dx= -\int {1 \over \sqrt {u}}\, du=-\int {u^{-{1 \over 2}}}\, du</math><br/> |
| | + | <math>=-{1 \over 2} u^{1\over2}+c</math><br/> |
| | + | <math>=-{1 \over 2} (1-x)^{1\over2}+c</math><br/> |
| | + | <math>=-{1 \over 2} \sqrt{1-x}+c</math><br/> |
| | + | <math>={- \sqrt{1-x} \over 2}+c</math><br/> |
| | + | |
| | + | = - 6.23 d) = |
| | + | <math>\int { 2a \over {a+2x}} \, dx</math><br/> |
| | + | <math>u=a+2x</math><br/> |
| | + | <math>{du \over dx}=2</math><br/> |
| | + | <math>dx={du \over 2}</math><br/> |
| | + | <math>\int { 2a \over {a+2x}} \, dx={1 \over 2} \int {2a \over u} \, du</math><br/> |
| | + | <math>={2a \over 2} lnu+c=a \cdot lnu+c</math><br/> |
| | + | <math>=a \cdot ln(a+2x)+c</math><br/> |
| | + | <math>=ln((a+2x)^a)+c</math><br/> |
| | + | |
| | + | = - 6.24 d) = |
| | + | <math>\int { 2 \over \sqrt[3] {4x-1}} \, dx</math><br/> |
| | + | <math>u=4x-1</math><br/> |
| | + | <math>{du \over dx} = 4</math><br/> |
| | + | <math>dx = {du \over 4}</math><br/> |
| | + | <math>\int { 2 \over \sqrt[3] {4x-1}} \, dx = {1 \over 4} \int {2 \over \sqrt[3]{u}} \, du={2 \over 4} \int {u^{-{1 \over 3}}} \, du={1 \over 2} \int {u^{-{1 \over 3}}} \, du</math><br/> |
| | + | <math>={1 \over 2} \cdot {2 \over 3} u^{2 \over 3}+c</math><br/> |
| | + | <math>={2 \over 6} (4x-1)^{2 \over 3}+c</math><br/> |
| | + | <math>={1 \over 3} \sqrt[3]{(4x-1)^2}+c</math><br/> |
| | + | |
| | + | = - 6.25 d) = |
| | + | <math>\int (e^{3x} - e^{-3x}) \, dx</math><br/> |
| | + | <math>=\int {e^{3x}} \,dx - \int {e^{-3x}} \, dx </math><br/> |
| | + | <math>={1 \over 3} e^{3x} - {-1 \over 3} e^{-3x}+c</math><br/> |
| | + | <math>={{e^{3x} + e^{-3x}} \over 3}+c</math><br/> |
allgemein
homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL

Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemeine Löung der homogenen
- 4.1 d)

- homogene -

D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)

- spezielle Lösung -

Einfach zweimal integrieren:

(kein +C, da man ja nur eine spezielle Lösung sucht!)

- Gesamtlösung -


(a,b beliebig)
- 4.1 e)

- homogene -


- spezielle -



- Gesamtlösung -


- 4.1 f)

- homogene (wie schon zwei Mal) -

- spezeille -




- Gesmatlösung -
- 4.2 c)



- allgemein -






[1]
[2]
Jetzt in [2] laut Anfangsbedingung einsetzen:


Jetzt in [1] laut Anfangsbedingung einsetzen:




- 4.2 d)



- allgemein -





[1]
[2]
Einsetzen in [2]


Einsetzen in [1]



- 4.3 a)








Einsetzen y(0)=1


Einsetzen y6)=1





- 4.3 b)








Einsetzen => lineares Gleichungssystem:


[1]


[2]
Subtrahiere [1] von [2]


Einsetzen in [1]



- 4.4
Vorläufig aufgeschoben...
? Biegung ?
- 4.7 g)


(* dx /
)
(integrieren)


Probe:


passt
- 4.7 h)


(* dx / cosx / y)
(integrieren)
(e^
)

Probe:




- 4.7 i)


(* dx / y / sinx)
(integrieren)
(e^
)

Probe:

(
)

passt
- 4.8 g)



(* dx / x / y)
(integrieren)


Probe:







passt
Ensetzen y(1)=1


- 4.8 h)


(* dx / sqrt(x) / (1-2y))
(integrieren)

(e^ )




Probe:





passt
- 6.8 h)






(das klappt mit u'=sinx und u=-cosx)


- 6.8 i)

?
- 6.9 e)








- 6.9 f)









- 6.22 d)









- 6.23 d)








- 6.24 d)
![{\displaystyle \int {2 \over {\sqrt[{3}]{4x-1}}}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5dfbf9a0390a799d0058227a77ee2b3b7359381)



![{\displaystyle \int {2 \over {\sqrt[{3}]{4x-1}}}\,dx={1 \over 4}\int {2 \over {\sqrt[{3}]{u}}}\,du={2 \over 4}\int {u^{-{1 \over 3}}}\,du={1 \over 2}\int {u^{-{1 \over 3}}}\,du}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7b0bb04d27bec316c6f4a816deded7f77cbf5b)


![{\displaystyle ={1 \over 3}{\sqrt[{3}]{(4x-1)^{2}}}+c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01ed54ce87d10301b4681f8ea1c13e43987d0f9f)
- 6.25 d)



