Difference between revisions of "Jan Math 2008-12-05"

From Wikiwasnonet
Jump to navigation Jump to search
Line 1: Line 1:
 
= allgemein =
 
= allgemein =
 
homogene DGL<br/>
 
homogene DGL<br/>
<math>ay''+by'+cy=0<math> (oder auch höhere Ableitungen von y)<br/>
+
<math>ay''+by'+cy=0</math> (oder auch höhere Ableitungen von y)<br/>
 
inhomogene DGL<br/>
 
inhomogene DGL<br/>
 
<math>ay''+by'+cy=f(x)</math><br/>
 
<math>ay''+by'+cy=f(x)</math><br/>

Revision as of 08:35, 4 December 2008

allgemein

homogene DGL
(oder auch höhere Ableitungen von y)
inhomogene DGL

Gelöst witd zuerst die homogene DGL - die Lösung der inhomogenen ist eine (irgend eine) Löung der inhomogenen plus die allgemine Löung der homogenen

4.1 d)


- homogene -

D.h. y zweimal differenziert ist 0, da kann y maximal x sein (Polynom ersten Grades). Homogene Lösung (allgemein)

- spezielle Lösung -

Einfach zweimal integrieren:

(kein +C, da man ja nur eine spezielle Lösung sucht!)

- Gesamtlösung -


(a,b beliebig)

4.1 e)


- homogene -


- spezielle -



- Gesamtlösung -


4.1 f)


- homogene (wie schon zwei Mal) -

- spezeille -


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp}=-x^4+{2 \over 3} x^3+ {1 \over 2} x^2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{sp2}=-x^4+{2 \over 3} x^3}
- Gesmatlösung -
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=-x^4+ {2 \over 3} x^3 + {1 \over 2} x^2 +ax+b}